Advances in Anti-Tumor Nanomedicine based on Functional Metal Organic Frameworks beyond Drug Carriers

Author(s):  
Qin Wei ◽  
Yihan Wu ◽  
Fangfang Liu ◽  
Jiao Cao ◽  
Jinliang Liu

Nanoscale metal-organic frameworks (MOFs) have attracted widespread interest due to the unique properties including tunable porous structure, high drug loading capacity, structural diversity, and outstanding biocompatibility. MOFs have been extensively...

2019 ◽  
Vol 48 (46) ◽  
pp. 17291-17297 ◽  
Author(s):  
Xuechuan Gao ◽  
Ruixue Cui ◽  
Lijun Song ◽  
Zhiliang Liu

The obtained Fe-MOF-5-NH2-FA-5-FAM/5-FU in this work shows high drug loading ability and excellent fluorescence and magnetic resonance imaging capability.


2016 ◽  
Vol 52 (22) ◽  
pp. 4128-4131 ◽  
Author(s):  
Linyi Bai ◽  
Soo Zeng Fiona Phua ◽  
Wei Qi Lim ◽  
Avijit Jana ◽  
Zhong Luo ◽  
...  

Two nanoscale covalent organic frameworks as drug carriers with good biocompatibility were developed, showing high drug loading capacity and sustained release in vitro.


2020 ◽  
Vol 49 (16) ◽  
pp. 5291-5301 ◽  
Author(s):  
Ying Pan ◽  
Zhidong Luo ◽  
Xiaoxiong Wang ◽  
Qianyi Chen ◽  
Junhao Chen ◽  
...  

We synthesize a new carrier of ALA@UIO-66-NH-FAM/MTA to achieve efficient synergistic therapy, taking advantage of the targeting component of MTA and high drug-loading capacity of hybrid scaffolds of MOF.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 98
Author(s):  
Liangyu Lu ◽  
Mengyu Ma ◽  
Chengtao Gao ◽  
Hongwei Li ◽  
Long Li ◽  
...  

Modern pharmaceutics requires novel drug loading platforms with high drug loading capacity, controlled release, high stability, and good biocompacity. Metal–organic frameworks (MOFs) show promising applications in biomedicine owing to their extraordinarily high surface area, tunable pore size, and adjustable internal surface properties. However, MOFs have low stability due to weak coordinate bonding and limited biocompatibility, limiting their bioapplication. In this study, we fabricated MOFs/polysilsesquioxane (PSQ) nanocomposites and utilized them as drug carriers. Amine-functionalized MOF (UiO-66-NH2) nanoparticles were synthesized and encapsulated with epoxy-functionalized polysilsesquioxane layer on the surface via a facile process. MOFs possessed high surface area and regular micropores, and PSQs offered stability, inertness, and functionality. The obtained UiO-66-NH2@EPSQ nanocomposites were utilized as carriers for ibuprofen, a drug with carboxylic groups on the surface, and demonstrated high drug loading capacity and well-controlled release property. The UiO-66-NH2@EPSQ nanocomposite exhibited low cytotoxicity to HeLa cells within a wide concentration range of 10–100 µg/mL, as estimated by the MTT method. The UiO-66-NH2@EPSQ drug release system could be a potential platform in the field of controlled drug delivery.


2019 ◽  
Vol 233 ◽  
pp. 230-235 ◽  
Author(s):  
Li-li Lu ◽  
Wen-ya Xiong ◽  
Jun-bin Ma ◽  
Tian-fang Gao ◽  
Si-yuan Peng ◽  
...  

Theranostics ◽  
2017 ◽  
Vol 7 (15) ◽  
pp. 3638-3652 ◽  
Author(s):  
Hangxiang Wang ◽  
Jianmei Chen ◽  
Chang Xu ◽  
Linlin Shi ◽  
Munire Tayier ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20956-20967 ◽  
Author(s):  
Qiaojuan Jia ◽  
Zhenzhen Li ◽  
Chuanpan Guo ◽  
Xiaoyu Huang ◽  
Yingpan Song ◽  
...  

A biocompatible γ-CD-MOF based DDS with high drug loading and full drug release was prepared and effective tumor growth inhibition was achieved in vivo.


RSC Advances ◽  
2019 ◽  
Vol 9 (61) ◽  
pp. 35566-35578 ◽  
Author(s):  
Subhankar Mukhopadhyay ◽  
Hanitrarimalala Veroniaina ◽  
Tadious Chimombe ◽  
Lidong Han ◽  
Wu Zhenghong ◽  
...  

Protean mesoporous silica nanoparticles are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including changeable pore size, mesoporosity, high drug loading capacity and biodegradability.


Sign in / Sign up

Export Citation Format

Share Document