Compressibilities of solids and the influence of inert additives on detonation velocity in solid explosives

1956 ◽  
Vol 22 ◽  
pp. 203 ◽  
Author(s):  
Melvin A. Cook

Detonation processes have been observed in narrow, heavily confined, columns of solid explosive by a new microwave interferometric technique. The technique is described and a multiple-beam theory of fringe shape is given. The location, with respect to the detonation front, of the surface reflecting the microwaves is discussed. Detonation velocity as a function of distance along the column is derived from an oscilloscope display of the fringe pattern. The calculation of the detonation velocity requires a knowledge of the wavelength of the microwaves in the explosive. For this purpose the relative permittivities of a number of explosives are given as a function of their pressed density. The accuracy and applications of the method are discussed. Experiments on tetryl are described in which the technique is evaluated by observing the detonation velocity for a range of densities, and is applied to resolution of the velocity transient during growth to detonation. A simple theory of growth is used to estimate the reaction zone length (0.4 mm) and the activation energy (2 kcal/mole) in the detonation of tetryl.


2011 ◽  
Vol 673 ◽  
pp. 265-270 ◽  
Author(s):  
Akihisa Mori ◽  
Li Qun Ruan ◽  
Kazumasa Shiramoto ◽  
Masahiro Fujita

Detonating code is a flexible code with an explosive core. It is used to transmit the ignition of explosives with high detonation velocity in the range of 5.5 to 7 km/s. However, it is difficult to use detonating code for the explosive welding of common metals since the horizontal point velocity usually exceeds the sound velocity. Hence, in the present work, a new method using underwater shock wave generated by the detonation of detonating code was tried. The details of the experimental parameters and the results are presented. From the results it is observed that the above technique is suitable to weld thin metal plates with relatively less explosives.


1997 ◽  
Vol 110 (1-2) ◽  
pp. 264-280 ◽  
Author(s):  
Steven K. Chidester ◽  
Craig M. Tarver ◽  
Leroy G. Green ◽  
Paul A. Urtiew

2018 ◽  
Vol 56 ◽  
pp. 01003
Author(s):  
Victor Sinitsyn ◽  
Pavel Menshikov ◽  
Vyacheslav Kutuev

The article deals with the question of the effect of explosive characteristics of emulsion explosives on the shotpile width. Currently, there are two main points of view to select an efficient type of explosive, which contributes to the qualitative destruction (fragmentation) of coarse clastic rocks. The first is based on the assumption that the detonation velocity of explosives must correspond to the break-down point of the rock (dynamic compression). Another point of view is that the detonation pressure of explosives determines only the head part of the pulse, on which the rock fragmentation is dependent only near the charge, in the contact zone around the borehole. The fragmentation of the entire rock volume within a given borehole array depends on the total magnitude of the explosion pulse, determined not by the detonation velocity, but by the total energy reserve of the explosive charge. Experimental explosions with some of the most common industrial explosives have been carried out in the current conditions of blasting of borehole charges by various types of industrial explosives from the point of view to select the most important parameter, which determines its influence on the shotpile width The investigations have been carried out according to the data obtained to establish that the energy properties of explosives (heat of explosive transformation and density of explosives) determine the decisive influence on the shotpile width, and the operability, the volume of the released gases, the detonation velocity for the change in the shotpile width have very little effect and may not be taken into account in calculations for the prediction of the shotpile.


Sign in / Sign up

Export Citation Format

Share Document