total magnitude
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 2)

2023 ◽  
Vol 83 ◽  
Author(s):  
R. Z. Ashraf ◽  
B. Ahmad ◽  
F. Shafique ◽  
M. U. Hassan ◽  
N. Asim ◽  
...  

Abstract The Indian crested porcupine (Hystrix indica) is a vertebrate pest of agricultural lands and forest. The study was aimed to report the damage to local crops by the Indian crested porcupine (Hystrix indica) in the Muzaffarabad District. A survey was conducted to identify the porcupine-affected areas and assess the crop damage to the local farmers in district Muzaffarabad Azad Jammu and Kashmir (AJK) from May 2017 to October 2017. Around 19 villages were surveyed, and a sum of 191 semi-structured questionnaires was distributed among farmers. Crop damage was found highest in village Dhanni where a porcupine destroyed 175 Kg/Kanal of the crops. Regarding the total magnitude of crop loss, village Danna and Koomi kot were the most affected areas. More than half (51.8%) of the respondents in the study area suffered the economic loss within the range of 101-200$, and (29.8%) of the people suffered losses in the range of 201-300$ annually. Among all crops, maize (Zea mays) was found to be the most damaged crop ranging between 1-300 Kg annually. In the study area, porcupine also inflicted a lot of damages to some important vegetables, including spinach (Spinacia oleracea), potato (Solanum tuberosum) and onion (Allium cepa). It was estimated that, on average, 511Kg of vegetables are destroyed by porcupine every year in the agricultural land of Muzaffarabad. It was concluded that the Indian crested porcupine has a devastating effect on agriculture which is an important source of income and food for the local community. Developing an effective pest control strategy with the help of the local government and the Wildlife department could help the farmers to overcome this problem.


2021 ◽  
pp. 002224372110603
Author(s):  
Manissa P. Gunadi ◽  
Ioannis Evangelidis

In this paper, the authors examine how historical price information influences consumers’ decision to defer a purchase. They focus on two aspects of historical price information: the direction and the frequency of past price changes. The authors advance a theoretical framework which postulates that the interaction between these two factor shapes consumers’ decisions to buy now versus later. Controlling for the total magnitude of price changes, the authors propose that consumers are more likely to defer purchase when the price of the product has previously increased compared to when the price has decreased. Importantly, the authors hypothesize that this effect is more pronounced when consumers observe a single large change in price (e.g., an increase of $100 versus a decrease of $100) compared to when they observe multiple smaller changes that establish a trend (e.g., four decreases of $25 versus four increases of $25). The authors argue that these effects are driven by differences in consumers’ expectations about future prices. They test their predictions, as well as two moderators of the proposed effects—the monotonicity and the timing of price changes—in six well-powered pre-registered experimental studies (N = 5,713) using both hypothetical and actual purchases.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7065
Author(s):  
Ava K. Bittner ◽  
Max Estabrook ◽  
Niki Dennis

We explored the feasibility of using Bluetooth low energy (BLE) beacon sensors to determine when individuals with low vision (LV) use handheld magnifiers at home. Knowing the frequency and duration of magnifier use would be helpful to document increased magnifier use after successful rehabilitation training, or conversely, to know when someone has abandoned a magnifier and requires assistance. Estimote Sticker BLE beacon sensors were attached to the handles of optical handheld magnifiers and dispensed to eight LV subjects to use at home. Temperature and motion data from the BLE beacon sensors were collected every second by a custom mobile application on a nearby smartphone and transmitted to a secure database server. Subjects noted the date and start/end times of their magnifier use in a diary log. Each of the 99 diary-logged self-reports of magnifier use across subjects was associated with BLE beacon sensor recordings of motion (mean 407 instances; SD 365) and increased temperature (mean 0.20 °C per minute; SD 0.16 °C) (mean total magnitude 5.4 °C; SD 2.6 °C). Diary-logged duration of magnifier use (mean 42 min; SD 24) was significantly correlated with instances of motion (p < 0.001) and rate of temperature increase (p < 0.001) recorded by the BLE beacon sensors. The BLE beacon sensors reliably detected meaningfully increased temperature, coupled with numerous instances of motion, when magnifiers were used for typical reading tasks at home by people with LV.


2021 ◽  
Vol 11 (14) ◽  
pp. 6461
Author(s):  
Andy Pearce ◽  
Tim Brookes ◽  
Russell Mason

Brightness is one of the most common timbral descriptors used for searching audio databases, and is also the timbral attribute of recorded sound that is most affected by microphone choice, making a brightness prediction model desirable for automatic metadata generation. A model, sensitive to microphone-related as well as source-related brightness, was developed based on a novel combination of the spectral centroid and the ratio of the total magnitude of the signal above 500 Hz to that of the full signal. This model performed well on training data (r = 0.922). Validating it on new data showed a slight gradient error but good linear correlation across source types and overall (r = 0.955). On both training and validation data, the new model out-performed metrics previously used for brightness prediction.


2021 ◽  
Author(s):  
Victor Carvalho Cabral ◽  
Fábio Augusto Gomes Vieira Reis ◽  
Fernando Mazo D’Affonseca ◽  
Ana Lucía ◽  
Claudia Vanessa dos Santos Corrêa ◽  
...  

AbstractDebris flows represent great hazard to humans due to their high destructive power. Understanding their hydrogeomorphic dynamics is fundamental in hazard assessment studies, especially in subtropical and tropical regions where debris flows have scarcely been studied when compared to other mass-wasting processes. Thus, this study aims at systematically analyzing the meteorological and geomorphological factors that characterize a landslide-triggered debris flow at the Pedra Branca catchment (Serra do Mar, Brazil), to quantify the debris flow’s magnitude, peak discharge and velocity. A magnitude comparison with empirical equations (Italian Alps, Taiwan, Serra do Mar) is also conducted. The meteorological analysis is based on satellite data and rain gauge measurements, while the geomorphological characterization is based on terrestrial and aerial investigations, with high spatial resolution. The results indicate that it was a large-sized stony debris flow, with a total magnitude of 120,195 m3, a peak discharge of 2146.7 m3 s−1 and a peak velocity of 26.5 m s−1. The debris flow was triggered by a 188-mm rainfall in 3 h (maximum intensity of 128 mm h−1), with an estimated return period of 15 to 20 years, which, combined with the intense accumulation of on-channel debris (ca. 37,000 m3), indicates that new high-magnitude debris flows in the catchment and the region are likely to occur within the next two decades. The knowledge of the potential frequency and magnitude (F–M) can support the creation of F–M relationships for Serra do Mar, a prerequisite for reliable hazard management and monitoring programs.


2021 ◽  
Author(s):  
Ali Taha

The human cervical spine is the most complicated structure in the vertebral column; its seven mobile vertebrae are interconnected in different ways and interact with many other parts of the body, in particularly [sic] the neck. Individual variations exist; with time, growth and aging can induce substantial changes in the components of each individual's spine. Knowledge of the function of the spine, from a mechanical viewpoint, is important to the study of both normal function and pathological processes. However, because of the structural complexity of the spine, only a limited understanding of the subject exists at present. Mathematical analogies are often used to study complex biological systems, which are difficult to investigate by using conventional experimental techniques. Hence, they are simulated and their behavior may then be studied in great detail. This project describes a mathematical model of the human cervical vertebral column. The model is comprised of a collection of equations expressing the mechanical relationships that must be obeyed among its elements, each of which represents a segment of a real vertebral column. Some degree of descriptive reality has been sacrificed in an effort to gain simplicity in approximating the behavior of the spine under a variety of conditions. The mathematical model was solved by preparing a special code as part of this project; determining dimensions and positions of neck components were another task since no such data are available in previous studies. However, most of the physical data of the neck was utilized from existing literature. The solution was determined by analyzing deflections, forces and stresses on each individual ligament and on each individual vertebra. Results of two case studies shown at the end of this project illustrate by figures depicted the projection views of the deflectuions of ligaments and total magnitude forces exerted on each vertebra.


2021 ◽  
Author(s):  
Ali Taha

The human cervical spine is the most complicated structure in the vertebral column; its seven mobile vertebrae are interconnected in different ways and interact with many other parts of the body, in particularly [sic] the neck. Individual variations exist; with time, growth and aging can induce substantial changes in the components of each individual's spine. Knowledge of the function of the spine, from a mechanical viewpoint, is important to the study of both normal function and pathological processes. However, because of the structural complexity of the spine, only a limited understanding of the subject exists at present. Mathematical analogies are often used to study complex biological systems, which are difficult to investigate by using conventional experimental techniques. Hence, they are simulated and their behavior may then be studied in great detail. This project describes a mathematical model of the human cervical vertebral column. The model is comprised of a collection of equations expressing the mechanical relationships that must be obeyed among its elements, each of which represents a segment of a real vertebral column. Some degree of descriptive reality has been sacrificed in an effort to gain simplicity in approximating the behavior of the spine under a variety of conditions. The mathematical model was solved by preparing a special code as part of this project; determining dimensions and positions of neck components were another task since no such data are available in previous studies. However, most of the physical data of the neck was utilized from existing literature. The solution was determined by analyzing deflections, forces and stresses on each individual ligament and on each individual vertebra. Results of two case studies shown at the end of this project illustrate by figures depicted the projection views of the deflectuions of ligaments and total magnitude forces exerted on each vertebra.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas R. Watters

AbstractMercury is a one-plate planet that has experienced significant radial contraction primarily driven by interior cooling. In some previous studies aimed at estimating the total magnitude of contraction, numerous faults are assigned to positive relief landforms, many without evidence of origin by deformation, resulting in estimates of planetary radius reduction as large as 7 km. Here we use high-incidence angle image mosaics and topography from the MESSENGER mission to map Mercury’s contractional landforms. Each landform is assigned a single, principal fault, resulting in an amount of contractional strain equivalent to a radius change of no more than 1 to 2 km. A small radius change since the end of heavy bombardment is consistent with Mercury’s long-lived magnetic field and evidence of recent tectonic activity. It is concluded that the retention of interior heat and a lower degree of contraction may be facilitated by the insulating effect of a thick megaregolith.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 678
Author(s):  
Narcís Saubi ◽  
Athina Kilpeläinen ◽  
Yoshiki Eto ◽  
Chun-Wei Chen ◽  
Àlex Olvera ◽  
...  

The use of Mycobacterium bovis bacillus Calmette–Guérin (BCG) as a live vaccine vehicle is a promising approach for HIV-1-specific T-cell induction. In this study, we used recombinant BCG expressing HIVACAT T-cell immunogen (HTI), BCG.HTI2auxo.int. BALB/c mice immunization with BCG.HTI2auxo.int prime and MVA.HTI boost was safe and induced HIV-1-specific T-cell responses. Two weeks after boost, T-cell responses were assessed by IFN-γ ELISpot. The highest total magnitude of IFN-γ spot-forming cells (SFC)/106 splenocytes was observed in BCG.HTI2auxo.int primed mice compared to mice receiving MVA.HTI alone or mice primed with BCGwt, although the differences between the vaccination regimens only reached trends. In order to evaluate the differences in the breadth of the T-cell immune responses, we examined the number of reactive peptide pools per mouse. Interestingly, both BCG.HTI2auxo.int and BCGwt primed mice recognized an average of four peptide pools per mouse. However, the variation was higher in BCG.HTI2auxo.int primed mice with one mouse recognizing 11 peptide pools and three mice recognizing few or no peptide pools. The recognition profile appeared to be more spread out for BCG.HTI2auxo.int primed mice and mice only receiving MVA.HTI. Here, we describe a useful vaccine platform for priming protective responses against HIV-1/TB and other prevalent infectious diseases.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Eduardo Flores-Alvarez ◽  
Edgar Anselmo Rios Piedra ◽  
Griselda-Adriana Cruz-Priego ◽  
Coral Durand-Muñoz ◽  
Sergio Moreno-Jimenez ◽  
...  

AbstractIntroductionSpecific correlations among diffusion tensor imaging (DTI)-derived metrics and magnetic resonance spectroscopy (MRS) metabolite ratios in brains with glioblastoma are still not completely understood.Patients and methodsWe made retrospective cohort study. MRS ratios (choline-to-N-acetyl aspartate [Cho/NAA], lipids and lactate to creatine [LL/Cr], and myo-inositol/creatine [mI/Cr]) were correlated with eleven DTI biomarkers: mean diffusivity (MD), fractional anisotropy (FA), pure isotropic diffusion (p), pure anisotropic diffusion (q), the total magnitude of the diffusion tensor (L), linear tensor (Cl), planar tensor (Cp), spherical tensor (Cs), relative anisotropy (RA), axial diffusivity (AD) and radial diffusivity (RD) at the same regions: enhanced rim, peritumoral oedema and normal-appearing white matter. Correlational analyses of 546 MRS and DTI measurements used Spearman coefficient.ResultsAt the enhancing rim we found four significant correlations: FA ⇔ LL/Cr, Rs = -.364, p = .034; Cp ⇔ LL/Cr, Rs = .362, p = .035; q ⇔ LL/Cr, Rs = -.349, p = .035; RA ⇔ LL/Cr, Rs = -.357, p = .038. Another ten pairs of significant correlations were found in the peritumoral edema: AD ⇔ LL/Cr, AD ⇔ mI/Cr, MD ⇔ LL/Cr, MD ⇔ mI/Cr, p ⇔ LL/Cr, p ⇔ mI/ Cr, RD ⇔ mI/Cr, RD ⇔ mI/Cr, L ⇔ LL/Cr, L ⇔ mI/Cr.ConclusionsDTI and MRS biomarkers answer different questions; peritumoral oedema represents the biggest challenge with at least ten significant correlations between DTI and MRS that need additional studies. The fact that DTI and MRS measures are not specific of one histologic type of tumour broadens their application to a wider variety of intracranial pathologies.


Sign in / Sign up

Export Citation Format

Share Document