Refractive index and excess volume for binary liquid mixtures. Part 1.—Analyses of new and old data for binary mixtures

Author(s):  
Mitsuo Nakata ◽  
Masao Sakurai
2002 ◽  
Vol 80 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Amalendu Pal ◽  
Rakesh Kumar Bhardwaj

Excess molar volumes (VmE) and dynamic viscosities (η) have been measured as a function of composition for binary liquid mixtures of propylamine with 2,5-dioxahexane, 2,5,8-trioxanonane, 2,5,8,11-tetraoxadodecane, 3,6,9-trioxaundecane, and 5,8,11-trioxapentadecane at 298.15 K. The excess volumes are positive over the entire range of composition for the systems propylamine + 2,5-dioxahexane, and + 3,6,9-trioxaundecane, negative for the systems propylamine + 2,5,8,11-tetraoxadodecane, and + 5,8,11-trioxapentadecane, and change sign from positive to negative for the remaining system propylamine + 2,5,8-trioxanonane. From the experimental data, deviations in the viscosity (Δln η) and excess energies of activation for viscous flow (ΔG*E) have been derived. These values are positive for all mixtures with the exception of propylamine + 2,5-dioxahexane.Key words : excess volume, viscosity, binary mixtures.


2012 ◽  
Vol 37 ◽  
pp. 1-11 ◽  
Author(s):  
R.K. Shukla ◽  
Atul Kumar ◽  
Naveen Awasthi ◽  
Urvashi Srivastava ◽  
V.S. Gangwar

1980 ◽  
Vol 33 (11) ◽  
pp. 2543 ◽  
Author(s):  
A Krishnaiah ◽  
DN Rao ◽  
PR Naidu

Excess volumes for binary mixtures of 1-chlorobutane with hexane, heptane, octane and nonane were measured dilatometrically at 303.15 K. Excess volumes are positive over the entire range of composition in the four mixtures. Further, it is observed that increase in chain length increases the magnitude of the excess function.


1990 ◽  
Vol 55 (7) ◽  
pp. 1653-1659 ◽  
Author(s):  
Ivan Cibulka

A relation of excess volume and density is analyzed for binary liquid mixtures. It is shown that, unlike the ideal mixture, whose density is a monotonous function of composition, extremes may appear on the density curves of mixtures with non-zero excess volumes. Conditions for the existence of extremes are derived. Some examples are also given and briefly discussed.


2005 ◽  
Vol 2 (2) ◽  
pp. 157-160 ◽  
Author(s):  
Shipra Baluja ◽  
Nirmal Pandaya ◽  
Nikunj Kachhadia ◽  
Asif Solanki

The density and refractive index (RI) for four binary liquid mixtures: diethyl malonate + dimethylformamide (DEM+DMF), diethyl malonate + Hexane (DEM+HEX), diethyl malonate + tetrahydrofuran (DEM+THF), diethyl malonate + 1,4-dioxane (DEM+DO) have been measured. The experimental values are compared with those calculated from Lorentz-Lorentz, Heller, Newton and Gladstone -Dale mixing rules.


2007 ◽  
Vol 4 (3) ◽  
pp. 343-349 ◽  
Author(s):  
Sangita Sharma ◽  
Pragnesh B. Patel ◽  
Rignesh S. Patel ◽  
J. J. Vora

Density and refractive index have been experimentally determined for binary liquid mixtures of eucalyptol with hydrocarbons (o-xylene,m-xylene and toluene) at 303.15 K, 308.15 K and 313.15 K. A comparative study of Lorentz-Lorenz (L-L), Weiner (W), Heller (H), Gladstone-Dale (G-D), Arago-Biot (A-B), Eykman (Eyk), Newton (Nw), Eyring-John (E-J) and Oster (Os) relations for determining the refractive index of a liquid has been carried out to test their validity for the three binaries over the entire mole fraction range of eucalyptol at 303.15 K, 308.15 K and 313.15 K. Comparison of various mixing rules has been expressed in terms of average deviation. From the experimentally measured values, refractive index deviations at different temperatures have been computed and fitted to the Redlich-Kister polynomial equation to derive the binary coefficients and standard deviations.


2021 ◽  
Vol 12 (3) ◽  
pp. 3762-3779

Optical properties of the solutions comprising of two or more miscible liquids have been of immense interest both in the area of chemical and physical sciences. To date, there are reports on studies regarding different combinations of binary liquid mixtures. However, the experiments involved are either high-ended or using sophisticated instrumentation. Our prime objective is to set up a simple laboratory arrangement to estimate the refractive index of typical binary-liquid mixtures obtained by proportionate variations in combinations selecting from benzene, ethyl acetate, tetrahydrofuran, and water; without involving high-standard instrumentation or expensive laboratory setups. In the present study, we adopted a basic method to determine the refractive index of pure liquids of low polarity, like, benzene (C6H6) and tetrahydrofuran or THF (C4H8O) and of high polarities, such as ethyl acetate or EtOAc or EA (C4H8O2), and water (H2O) and also their binary homogeneous mixture with high accuracy. Our experimental data involving variation of refractive index with molar volume fraction matched very well with theoretical interpretations by Arago-Biot and Lorentz-Lorenz equation. In our results, density corrections have been neglected as we have chosen non-volatile solvents.


2019 ◽  
Vol 32 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Pinki Kashyap ◽  
Manju Rani ◽  
D.P. Tiwari

Ultrasonic speeds (u) and refractive indices (n) of the binary liquid mixtures of ethanol with diisopropyl ether (DIPE) or cyclohexane or n-alkane (C6-C9) were experimentally measured from 298.15 to 318.15 K over entire composition range. Using these measurements deviation in ultrasonic speed (Δu), deviation in refractive index (Δn), excess intermolecular free length (Lf E ) and excess isentropic compressibility (Ks E ) were calculated and fitted with Redlich-Kister equation. The Δu values are negative for all binary mixture and magnitude of negative deviation for binary mixture of ethanol and n-alkane decreases as chain length increases. At equimolar composition, Ks E follows the order: n-hexane > n-heptane >n-otcane > n-nonane > diisopropyl ether > cyclohexane. Experimental results were analyzed to understand the various molecular interactions present in the binary mixtures. The u values for all binary liquid solutions were also correlated using different empirical correlations such as Nomoto, impedence dependence relation and van Dael ideal mixing relation. The u for binary liquid mixtures were also computed theoretically using Schaaff′s collision factor theory. Free length theory was used to compute inter-molecular free length (Lf E ). Various correlations e.g., Arago-Biot (A-B), Gladstone-Dale (G-D), Heller (H), Lorentz-Lorentz (L-L), Eyring-John (E-J), Newton (Nw) and Weiner (W) were used for calculating refractive indices of selected systems theoretically.


Sign in / Sign up

Export Citation Format

Share Document