CXXX.—The distribution of saturated and unsaturated higher fatty acids in mixed synthetic glycol esters

1931 ◽  
Vol 0 (0) ◽  
pp. 901-907 ◽  
Author(s):  
Ramkanta Bhattacharya ◽  
Thomas Percy Hilditch
1952 ◽  
Vol 195 (1) ◽  
pp. 299-310 ◽  
Author(s):  
Edward H. Ahrens ◽  
Lyman C. Craig

1967 ◽  
Vol 34 (3) ◽  
pp. 257-272 ◽  
Author(s):  
B. Reiter ◽  
T. F. Fryer ◽  
A. Pickering ◽  
Helen R. Chapman ◽  
R. C. Lawrence ◽  
...  

SummaryComparisons were made of the flavour, free fatty acids and bacterial flora of commercial cheese made at different factories and experimental cheese made under aseptic conditions: (i) with δ-gluconic acid lactone instead of starter, (ii) with starter only, (iii) with starter and added floras derived from the curd of the commercial cheeses (reference flora cheeses).Comparison of the bacterial flora of commercial and reference flora cheeses showed that replication of organisms was better with some reference floras than with others. In all the cheeses the lactobacilli increased in numbers during maturation, whilst other groups of organisms died out.The amount of acetic acid present was influenced by the starter and by the lactobacilli. Single-strain starters produced some acetic acid, most of which was lost in the whey; commercial starters produced considerably more, due to the presence in them of Streptococcus diacetilactis. Later in maturation lactobacilli increased the acetic acid content, a greater increase being observed with homo-than with heterofermentative strains.The initial levels of butyric and higher fatty acids in the milk varied with source of the milk and with the season, summer milk having higher levels than winter milk. During cheese-making a slight increase of these acids occurred in every cheese made with starter and a further small increase occurred during ripening. However, there was no increase in the content of these acids in the cheese made with δ-gluconic acid lactone, indicating that lactic acid bacteria were weakly hydrolysing the milk fat.Flavour trials showed that Cheddar flavour was present not only in the reference flora and commercial cheese, but also in the cheese made with starter only. Different starters produced different intensities of flavour; one strain produced an intense fruity off-flavour. Cheeses made with δ-gluconic acid lactone were devoid of cheese flavour.


1962 ◽  
Vol 35 (7) ◽  
pp. 1233-1236 ◽  
Author(s):  
Ryoichi Matsuda ◽  
Takeo Hisano ◽  
Toshio Terazawa ◽  
Norio Shinohara

Parasitology ◽  
1967 ◽  
Vol 57 (1) ◽  
pp. 79-86 ◽  
Author(s):  
B. L. James ◽  
E. A. Bowers

The distribution of carbohydrates, lipids and enzymes in the daughter sporocyst and contained cercariae of Cercaria bucephalopsis haimaena Lacaze-Duthiers, 1854, is mapped and used as an indication of metabolism. It is concluded that host glucose, glycogen, fatty acids and neutral lipids are absorbed and pass through the syncytial tegument into the cellular sub-tegument. They are then either metabolized or passed into the body cavity and contained cercariae. Glucose seems to be either converted into glycogen and glycoproteins or metabolized anaerobically. The end products of anaerobic respiration are fatty acids and neutral lipids. These pass into the excretory system, which flushes them into the body cavity of the daughter sporocyst, from where they enter the body of the developing cercariae. In the cercariae they are deposited, together with host lipids, possibly as less toxic higher fatty acids or other stored lipids. The stored glycogen and lipids in the cercariae are probably utilized aerobically during the free-living existence. The transport of nutrients and excretory products across the cell membranes may be aided by alkaline phosphatase and esterase activity, as is the metabolism of carbohydrates and lipids. Acid mucopolysaccharide precursors appear to be synthesized in the dense cytoplasm of the mid-tegument of the daughter sporocyst and secreted into the host's visceral haemocoel. Acid phosphatase and esterase found in this region may be involved in the synthesis and also in the breakdown of complex incoming nutrients.We are grateful to Professor E. W. Knight-Jones for laboratory facilities and to the Science Research Council for a grant to one of us (E. A. B.) which made the work possible.


Sign in / Sign up

Export Citation Format

Share Document