The use of topological indexes to predict theRMvalues of higher fatty acids, hydroxy fatty acids, and their esters in RPTLC

2002 ◽  
Vol 15 (3) ◽  
pp. 177-182 ◽  
Author(s):  
Anna Niestroj ◽  
Alina Pyka ◽  
Jozef Śliwiok
1963 ◽  
Vol 4 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Yasuo Kishimoto ◽  
Norman S. Radin

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 665
Author(s):  
Li Zong ◽  
Yan Zhang ◽  
Zhengkang Shao ◽  
Yingwu Wang ◽  
Zheng Guo ◽  
...  

Cytochrome P450 (CYP) mediated enzymatic hydroxylation of fatty acids present a green alternative to chemical synthesis of hydroxy fatty acids (HFAs), which are high-value oleochemicals with various uses in materials industry and medical field. Although many CYPs require the presence of additional reductase proteins for catalytic activity, self-sufficient CYPs have their reductase partner naturally fused into their catalytic domain, leading to a greatly simplified biotransformation process. A recently discovered self-sufficient CYP, BAMF2522 from Bacillus amyloliquefaciens DSM 7, exhibits novel regioselectivity by hydroxylating in-chain positions of palmitic acid generating ω-1 to ω-7 HFAs, a rare regiodiversity profile among CYPs. Besides, F89I mutant of BAMF2522 expanded hydroxylation up to ω-9 position of palmitic acid. Here, we further characterize this enzyme by determining optimum temperature and pH as well as thermal stability. Moreover, using extensive site-directed and site-saturation mutagenesis, we obtained BAMF2522 variants that demonstrate greatly increased regioselectivity for in-chain positions (ω-4 to ω-9) of various medium to long chain fatty acids. Remarkably, when a six-residue mutant was reacted with palmitic acid, 84% of total product content was the sum of ω-7, ω-8 and ω-9 HFA products, the highest in-chain selectivity observed to date with a self-sufficient CYP. In short, our study demonstrates the potential of a recently identified CYP and its mutants for green and sustainable production of a variety of in-chain hydroxy enriched HFAs.


1952 ◽  
Vol 195 (1) ◽  
pp. 299-310 ◽  
Author(s):  
Edward H. Ahrens ◽  
Lyman C. Craig

1967 ◽  
Vol 34 (3) ◽  
pp. 257-272 ◽  
Author(s):  
B. Reiter ◽  
T. F. Fryer ◽  
A. Pickering ◽  
Helen R. Chapman ◽  
R. C. Lawrence ◽  
...  

SummaryComparisons were made of the flavour, free fatty acids and bacterial flora of commercial cheese made at different factories and experimental cheese made under aseptic conditions: (i) with δ-gluconic acid lactone instead of starter, (ii) with starter only, (iii) with starter and added floras derived from the curd of the commercial cheeses (reference flora cheeses).Comparison of the bacterial flora of commercial and reference flora cheeses showed that replication of organisms was better with some reference floras than with others. In all the cheeses the lactobacilli increased in numbers during maturation, whilst other groups of organisms died out.The amount of acetic acid present was influenced by the starter and by the lactobacilli. Single-strain starters produced some acetic acid, most of which was lost in the whey; commercial starters produced considerably more, due to the presence in them of Streptococcus diacetilactis. Later in maturation lactobacilli increased the acetic acid content, a greater increase being observed with homo-than with heterofermentative strains.The initial levels of butyric and higher fatty acids in the milk varied with source of the milk and with the season, summer milk having higher levels than winter milk. During cheese-making a slight increase of these acids occurred in every cheese made with starter and a further small increase occurred during ripening. However, there was no increase in the content of these acids in the cheese made with δ-gluconic acid lactone, indicating that lactic acid bacteria were weakly hydrolysing the milk fat.Flavour trials showed that Cheddar flavour was present not only in the reference flora and commercial cheese, but also in the cheese made with starter only. Different starters produced different intensities of flavour; one strain produced an intense fruity off-flavour. Cheeses made with δ-gluconic acid lactone were devoid of cheese flavour.


Sign in / Sign up

Export Citation Format

Share Document