scholarly journals In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation

1999 ◽  
Vol 343 (1) ◽  
pp. 191 ◽  
Author(s):  
Rolf K. BERGE ◽  
Lise MADSEN ◽  
Hege VAAGENES ◽  
Karl Johan TRONSTAD ◽  
Martin GÖTTLICHER ◽  
...  
1999 ◽  
Vol 343 (1) ◽  
pp. 191-197 ◽  
Author(s):  
Rolf K. BERGE ◽  
Lise MADSEN ◽  
Hege VAAGENES ◽  
Karl Johan TRONSTAD ◽  
Martin GÖTTLICHER ◽  
...  

Hypolipidaemic fatty acid derivatives and polyunsaturated fatty acids decrease concentrations of plasma triacylglycerol by mechanisms that are not fully understood. Because poor susceptibility to β- and/or ω-oxidation is apparently a determinant of the peroxisome proliferating and hypolipidaemic capacity of fatty acids and derivatives, the relative importance of activation of the peroxisome-proliferator-activated receptor α (PPARα), fatty acid oxidation and triacylglycerol synthesis were examined. We have compared the effects of differentially β-oxidizable fatty acids on these parameters in primary cultures of rat hepatocytes. Tetradecylthioacetic acid (TTA), 2-methyleicosapentaenoic acid and 3-thia-octadecatetraenoic acid, which are non-β-oxidizable fatty acid derivatives, were potent activators of a glucocorticoid receptor (GR)-PPARα chimaera. This activation was paradoxically reflected in an substantially increased oxidation of [1-14C]palmitic acid and/or oleic acid. The incorporation of [1-14C]palmitic acid and/or oleic acid into cell-associated and secreted triacylglycerol was decreased by 15-20% and 30% respectively with these non-β-oxidizable fatty acid derivatives. The CoA ester of TTA inhibited the esterification of 1,2-diacylglycerol in rat liver microsomes. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) activated GR-PPARα. EPA increased the oxidation of [1-14C]palmitic acid but DHA had no effect. The CoA ester of EPA inhibited the esterification of 1,2-diacylglycerol, whereas DHA-CoA had no effect. The ratio between synthesized triacylglycerol and diacylglycerol was lower in hepatocytes cultured with EPA in the medium compared with DHA or oleic acid, indicating a decreased conversion of diacylglycerol to triacylglycerol. Indeed, the incorporation of [1-14C]oleic acid into secreted triacylglycerol was decreased by 20% in the presence of EPA. In conclusion, a decreased availability of fatty acids for triacylglycerol synthesis by increased mitochondrial β-oxidation and decreased triacylglycerol formation caused by inhibition of diacylglycerol acyltransferase might explain the hypolipidaemic effect of TTA and EPA.


1997 ◽  
Vol 82 (12) ◽  
pp. 4208-4213 ◽  
Author(s):  
Kin-Chuen Leung ◽  
Ken K. Y. Ho

In vivo administration of GH induces lipolysis and lipid oxidation. However, it is not clear whether the stimulation of lipid oxidation is a direct effect of GH or is driven by increased substrate supply secondary to lipolysis. An in vitro bioassay has been established for assessing β-oxidation of fatty acids in mitochondria, based on the measurement of conversion of tritiated palmitic acid to 3H2O by fibroblasts in culture. We have modified this assay to investigate whether GH stimulates fatty acid oxidation. GH stimulated oxidation of palmitic acid maximally by 26.7 ± 2.5% (mean ± sem; P < 0.0001). The stimulation was biphasic, with the oxidation rate increasing with increasing GH concentration to a peak response at 1.5 nmol/L and declining to a level not significantly different from control thereafter. Insulin-like growth factor-I at concentrations of up to 250 nmol/L had no significant effect on fatty acid oxidation. GH-binding protein attenuated the effect of GH. An anti-GH receptor (GHR) antibody (MAb263), which dimerizes the receptor and induces GH-like biological actions, significantly stimulated fatty acid oxidation. Another anti-GHR antibody (MAb5), which prevents receptor dimerization, suppressed GH action. In summary, GH directly stimulated fatty acid oxidation, an action not mediated by insulin-like growth factor-I. Dimerization of GHRs was necessary for this effect. This bioassay is a practical tool for studying the regulatory effects of GH on lipid oxidation.


1958 ◽  
Vol 194 (2) ◽  
pp. 379-386 ◽  
Author(s):  
Irving B. Fritz ◽  
Don G. Davis ◽  
Robert H. Holtrop ◽  
Harold Dundee

The metabolism of C14-labeled acetate, octanoate and palmitate by isolated skeletal muscle (latissimus dorsi and diaphragm) from normal, fed rats has been examined. The rates at which these substrates were converted to C14O2 have been shown to vary with concentration, temperature, functional state of the muscle, and the presence of albumin. Increased concentration of fatty acids led to enhanced conversion of substrate to C14O2. Electrical stimulation of muscles under tension resulted in approximately a 60% increase in oxygen consumption and about a 100% rise in fatty acid oxidation. The addition of glucose did not alter the rate of fatty acid metabolism by muscle. The addition of bovine albumin at concentrations up to approximately 1 µm albumin/7 µm palmitate resulted in augmented palmitic acid oxidation. However, at concentrations of albumin greater than 1 µm albumin/7 µm palmitate, palmitic acid degradation by resting diaphragm was inhibited, suggesting a firmer binding of fatty acid to albumin. The Q10 for palmitic acid oxidation by resting diaphragm was 2.23 in the absence of added albumin between 25° and 37°C. The data are discussed in relation to the present concepts of fat metabolism and transport in vivo. It is suggested that fat degradation in isolated muscle may provide an energy source during activity.


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Jagan N. Thupari ◽  
A. Vadlamudi ◽  
S. Medghalchi ◽  
M. L. Pinn ◽  
J, M. McFadden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document