scholarly journals Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli

2001 ◽  
Vol 358 (1) ◽  
pp. 263 ◽  
Author(s):  
Bernd H. A. REHM ◽  
Qingsheng QI ◽  
Br. Bernd BEERMANN ◽  
Hans-Jürgen HINZ ◽  
Alexander STEINBÜCHEL
2001 ◽  
Vol 358 (1) ◽  
pp. 263-268 ◽  
Author(s):  
Bernd H. A. REHM ◽  
Qingsheng QI ◽  
Br. Bernd BEERMANN ◽  
Hans-Jürgen HINZ ◽  
Alexander STEINBÜCHEL

In order to facilitate the large-scale preparation of active class II polyhydroxyalkanoate (PHA) synthase, we constructed a vector pT7-7 derivative that contains a modified phaC1 gene encoding a PHA synthase from Pseudomonas aeruginosa possessing six N-terminally fused histidine residues. Overexpression of this phaC1 gene under control of the strong Ø10 promoter was achieved in Escherichia coli BL21(DE3). The fusion protein was deposited as inactive inclusion bodies in recombinant E. coli, and contributed approx. 30% of total protein. The inclusion bodies were purified by selective solubilization, resulting in approx. 70–80% pure PHA synthase, then dissolved and denatured by 6M guanidine hydrochloride. The denatured PHA synthase was reversibly immobilized on a Ni2+-nitrilotriacetate–agarose matrix. The matrix-bound fusion protein was refolded by gradual removal of the chaotropic reagent. This procedure avoided the aggregation of folding intermediates which often decreases the efficiency of refolding experiments. Finally, the refolded fusion protein was eluted with imidazole. The purified and refolded PHA synthase protein showed a specific enzyme activity of 10.8m-units/mg employing (R/S)-3-hydroxydecanoyl-CoA as substrate, which corresponds to 27% of the maximum specific activity of the native enzyme. The refolding of the enzyme was confirmed by CD spectroscopy. Deconvolution of the spectrum resulted in the following secondary structure prediction: 10% α-helix, 50% β-sheet and 40% random coil. Gel filtration chromatography indicated an apparent molecular mass of 69kDa for the refolded PHA synthase. However, light-scattering analysis of a 10-fold concentrated sample indicated a molecular mass of 128kDa. These data suggest that the class II PHA synthase is present in an equilibrium of monomer and dimer.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Mona Alibolandi ◽  
Hasan Mirzahoseini

Escherichia coliis one of the most widely used hosts for the production of recombinant proteins but insoluble expression of heterologous proteins is a major bottleneck in production of recombinant proteins inE. coli.In vitrorefolding of inclusion body into proteins with native conformations is a solution for this problem but there is a need for optimization of condition for each protein specifically. Several approaches have been described for in vitro refolding; most of them involve the use of additives for assisting correct folding. Cosolutes play a major role in refolding process and can be classified according to their function as aggregation suppressors and folding enhancers. This paper presents a review of additives that are used in refolding process of insoluble recombinant proteins in small scale and industrial processes.


2019 ◽  
Vol 17 (3) ◽  
pp. 140-148 ◽  
Author(s):  
A. Ouelhadj ◽  
L. Ait Salem ◽  
D. Djenane

Ce travail vise l’étude de l’activité antibactérienne de l’huile essentielle (HE) de Pelargoniumx asperum et de la bactériocine, la nisine seul et en combinaison vis-à-vis de six bactéries dont quatre sont multirésistantes d’origine clinique. L’activité antibactérienne in vitro a été évaluée par la méthode de diffusion sur gélose. La concentration minimale inhibitrice (CMI) est aussi déterminée pour HE. Les résultats ont révélé une activité antibactérienne significative exercée par HE visà-vis de Staphylococcus aureus (ATCC 43300), Staphylococcus aureus et Escherichia coli avec des diamètres d’inhibition de 36,00 ; 22,50 et 40,00 mm, respectivement. Cependant, l’HE de Pelargonium asperum a montré une activité antibactérienne supérieure par rapport à la nisine. Les valeurs des CMI rapportées dans cette étude sont comprises entre 1,98–3,96 μl/ml. Les combinaisons réalisées entre HE et la nisine ont montré un effet additif vis-à-vis de Escherichia coli (ATCC 25922) avec (50 % HE Pelargonium asperum + 50 % nisine). Par contre, nous avons enregistré une synergie vis-à-vis de Klebsiella pneumoniae avec (75 % HE Pelargonium asperum + 25 % nisine) et contre Pseudomonas aeruginosa avec les trois combinaisons testées. Les résultats obtenus permettent de dire que l’HE de Pelargonium asperum possède une activité antibactérienne ainsi que sa combinaison avec la nisine pourrait représenter une bonne alternative pour la lutte contre l’antibiorésistance.


Bionatura ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 1335-1339
Author(s):  
Pool Marcos-Carbajal ◽  
Christian Allca-Muñoz ◽  
Ángel Urbano-Niño ◽  
Alberto Salazar-Granara

El objetivo del estudio es determinar la actividad antibacteriana de Metformina frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa. Se evaluó la actividad antibacteriana mediante la técnica de Kirby Bauer. Se utilizó cepas de Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) y Pseudomonas aeruginosa (ATCC 27853), las cuales se expusieron a Metformina en concentraciones de 250 mg y 500 mg, Ciprofloxacino (CIP) 5 µg, Imipenem (IPM) 10 µg, y Cefoxitin (FOX) 30 µg. Frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa se presentó un halo de inhibición de 6 mm. para Metformina 250 mg, 6 mm. para Metformina 500 mg, y un halo de inhibición >25 mm. con el uso de Ciprofloxacino 5 µg, Cefoxitin 30 µg, e Imipenem 10 µg respectivamente. En conclusion, In vitro Metformina a dosis de 250 y 500 mg, no presentó efecto antibacteriano frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa.


2021 ◽  
Vol 7 (5) ◽  
pp. 325
Author(s):  
Laura Isabel de de Eugenio ◽  
Rosa Peces-Pérez ◽  
Dolores Linde ◽  
Alicia Prieto ◽  
Jorge Barriuso ◽  
...  

A dye-decolorizing peroxidase (DyP) from Irpex lacteus was cloned and heterologously expressed as inclusion bodies in Escherichia coli. The protein was purified in one chromatographic step after its in vitro activation. It was active on ABTS, 2,6-dimethoxyphenol (DMP), and anthraquinoid and azo dyes as reported for other fungal DyPs, but it was also able to oxidize Mn2+ (as manganese peroxidases and versatile peroxidases) and veratryl alcohol (VA) (as lignin peroxidases and versatile peroxidases). This corroborated that I. lacteus DyPs are the only enzymes able to oxidize high redox potential dyes, VA and Mn+2. Phylogenetic analysis grouped this enzyme with other type D-DyPs from basidiomycetes. In addition to its interest for dye decolorization, the results of the transformation of softwood and hardwood lignosulfonates suggest a putative biological role of this enzyme in the degradation of phenolic lignin.


Sign in / Sign up

Export Citation Format

Share Document