Biochemical and functional characterization of the human tissue kallikrein 9

2017 ◽  
Vol 474 (14) ◽  
pp. 2417-2433 ◽  
Author(s):  
Panagiota S. Filippou ◽  
Sofia Farkona ◽  
Davor Brinc ◽  
Yijing Yu ◽  
Ioannis Prassas ◽  
...  

Human tissue kallikrein 9 (KLK9) is a member of the kallikrein-related family of proteases. Despite its known expression profile, much less is known about the functional roles of this protease and its implications in normal physiology and disease. We present here the first data on the biochemical characterization of KLK9, investigate parameters that affect its enzymatic activity (such as inhibitors) and provide preliminary insights into its putative substrates. We show that mature KLK9 is a glycosylated chymotrypsin-like enzyme with strong preference for tyrosine over phenylalanine at the P1 cleavage position. The enzyme activity is enhanced by Mg2+ and Ca2+, but is reversibly attenuated by Zn2+. KLK9 is inhibited in vitro by many naturally occurring or synthetic protease inhibitors. Using a combination of degradomic and substrate specificity assays, we identified candidate KLK9 substrates in two different epithelial cell lines [the non-tumorigenic human keratinocyte cells (HaCaT) and the tumorigenic tongue squamous carcinoma cells (SCC9)]. Two potential KLK9 substrates [KLK10 and midkine (MDK)] were subjected to further validation. Taken together, our data delineate some functional and biochemical properties of KLK9 for future elucidation of the role of this enzyme in health and disease.

1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


2006 ◽  
Vol 282 (4) ◽  
pp. 2405-2422 ◽  
Author(s):  
Carla A. Borgoño ◽  
Iacovos P. Michael ◽  
Julie L. V. Shaw ◽  
Liu-Ying Luo ◽  
Manik C. Ghosh ◽  
...  

2001 ◽  
Vol 29 (2) ◽  
pp. 183-187 ◽  
Author(s):  
A. Tissier ◽  
E. G. Frank ◽  
J. P. McDonald ◽  
A. Vaisman ◽  
A. R. Fernàndez deHenestrosa Henestrosa ◽  
...  

The human RAD30B gene has recently been shown to encode a novel DNA polymerase, DNA polymerase i (poli). The role of poli within the cell is presently unknown, and the only clues to its cellular function come from its biochemical characterization in vitro. The aim of this short review is, therefore, to summarize the known enzymic activities of poli and to speculate as to how these biochemical properties might relate to its in vivo function.


2020 ◽  
Vol 477 (12) ◽  
pp. 2221-2236
Author(s):  
Michal Gabruk ◽  
Beata Mysliwa-Kurdziel

Light-dependent protochlorophyllide oxidoreductase (LPOR) catalyzes the reduction of protochlorophyllide to chlorophyllide, which is a key reaction for angiosperm development. Dark operative light-independent protochlorophyllide oxidoreductase (DPOR) is the other enzyme able to catalyze this reaction, however, it is not present in angiosperms. LPOR, which evolved later than DPOR, requires light to trigger the reaction. The ancestors of angiosperms lost DPOR genes and duplicated the LPORs, however, the LPOR evolution in angiosperms has not been yet investigated. In the present study, we built a phylogenetic tree using 557 nucleotide sequences of LPORs from both bacteria and plants to uncover the evolution of LPOR. The tree revealed that all modern sequences of LPOR diverged from a single sequence ∼1.36 billion years ago. The LPOR gene was then duplicated at least 10 times in angiosperms, leading to the formation of two or even more LPOR isoforms in multiple species. In the case of Arabidopsis thaliana, AtPORA and AtPORB originated in one duplication event, in contrary to the isoform AtPORC, which diverged first. We performed biochemical characterization of these isoforms in vitro, revealing differences in the lipid-driven properties. The results prone us to hypothesize that duplication events of LPOR gave rise to the isoforms having different lipid-driven activity, which may predispose them for functioning in different locations in plastids. Moreover, we showed that LPOR from Synechocystis operated in the lipid-independent manner, revealing differences between bacterial and plant LPORs. Based on the presented results, we propose a novel classification of LPOR enzymes based on their biochemical properties and phylogenetic relationships.


2009 ◽  
Vol 191 (11) ◽  
pp. 3534-3543 ◽  
Author(s):  
Luis López-Maury ◽  
Ana María Sánchez-Riego ◽  
José Carlos Reyes ◽  
Francisco J. Florencio

ABSTRACT Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by an operon of three genes in which arsC codes for an arsenate reductase with unique characteristics. Here we describe the identification of two additional and nearly identical genes coding for arsenate reductases in Synechocystis sp. strain PCC 6803, which we have designed arsI1 and arsI2, and the biochemical characterization of both ArsC (arsenate reductase) and ArsI. Functional analysis of single, double, and triple mutants shows that both ArsI enzymes are active arsenate reductases but that their roles in arsenate resistance are essential only in the absence of ArsC. Based on its biochemical properties, ArsC belongs to a family that, though related to thioredoxin-dependent arsenate reductases, uses the glutathione/glutaredoxin system for reduction, whereas ArsI belongs to the previously known glutaredoxin-dependent family. We have also analyzed the role in arsenate resistance of the three glutaredoxins present in Synechocystis sp. strain PCC 6803 both in vitro and in vivo. Only the dithiolic glutaredoxins, GrxA (glutaredoxin A) and GrxB (glutaredoxin B), are able to donate electrons to both types of reductases in vitro, while GrxC (glutaredoxin C), a monothiolic glutaredoxin, is unable to donate electrons to either type. Analysis of glutaredoxin mutant strains revealed that only those lacking the grxA gene have impaired arsenic resistance.


2020 ◽  
Vol 45 (4) ◽  
pp. 373-380
Author(s):  
Naciye Kayhan ◽  
Veysel Çomaklı ◽  
Sevki Adem ◽  
Caglar Güler

AbstractObjectivesEarthworms have a large impact on the soil ecosystem. They are quite sensitive to pollutants. Purification and biochemical characterization of glucose-6-phosphate dehydrogenases (G6PD) from the earthworm species Eisenia fetida were aimed. The determination of the toxicity potentials of some soil pollutants on G6PD activity was intended.MethodsG6PD was isolated using 2′,5′-ADP-Sepharose 4B affinity column. Enzyme purity and molecular mass were determined by SDS-PAGE. Its biochemical properties investigated. The effects of some soil pollutants on the enzyme were studied in vitro.ResultsEnzyme was purified with 28% yields and 232 fold. Optimum pH and buffer concentration, optimal and stable temperature was determined as pH: 8.5, 60 mM, 25 °C and 20 °C. Its molecular weight estimated as 36 kDa. The Ni2+, Hg2+, Pb2+, Cr2+, and Fe2+ ions with IC50 values in the range of 56 ± 06−120 ± 20 μM and the diniconazole, metalaxyl, methomyl, carboxyl, and oxamyl with IC50 values in the range of 7.6 ± 1.2−77 ± 12 μM exhibited an inhibitory effect on G6PD.ConclusionsG6PD was isolated and characterized from E. fetida. Its catalytic activity decreased with very low concentration by pesticides and metal ions. The results indicated that the inhibition of G6PD may be important in the toxicity mechanism of pollutants on this earthworm.


2018 ◽  
Vol 58 ◽  
pp. 108-115 ◽  
Author(s):  
Panagiota S. Filippou ◽  
Annie H. Ren ◽  
Sudarshan Bala ◽  
Michail-Dimitrios Papaioannou ◽  
Davor Brinc ◽  
...  

2007 ◽  
Vol 189 (7) ◽  
pp. 2590-2598 ◽  
Author(s):  
Kerstin Steiner ◽  
René Novotny ◽  
Kinnari Patel ◽  
Evgenij Vinogradov ◽  
Chris Whitfield ◽  
...  

ABSTRACTThe glycan chain of the S-layer glycoprotein ofGeobacillus stearothermophilusNRS 2004/3a is composed of repeating units [→2)-α-l-Rhap-(1→3)-β-l-Rhap-(1→2)-α-l-Rhap-(1→], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three α-l-rhamnose residues, and a β-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis ofGeobacillus stearothermophilusNRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP fromSalmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains ofEscherichia coliandSalmonella entericaserovar Typhimurium.


2020 ◽  
Vol 26 (31) ◽  
pp. 3828-3833 ◽  
Author(s):  
Tuula Peñate-Medina ◽  
Eike Kraas ◽  
Kunliang Luo ◽  
Jana Humbert ◽  
Hanwen Zhu ◽  
...  

Background: Nanoparticle imaging and tracking the release of the loaded material from the nanoparticle system have attracted significant attention in recent years. If the release of the loaded molecules could be monitored reliably in vivo, it would speed up the development of drug delivery systems remarkably. Methods: Here, we test a system that uses indocyanine green (ICG) as a fluorescent agent for studying release kinetics in vitro and in vivo from the lipid iron nanoparticle delivery system. The ICG spectral properties like its concentration dependence, sensitivity and the fluctuation of the absorption and emission wavelengths can be utilized for gathering information about the change of the ICG surrounding. Results: We have found that the absorption, fluorescence, and photoacoustic spectra of ICG in lipid iron nanoparticles differ from the spectra of ICG in pure water and plasma. We followed the ICG containing liposomal nanoparticle uptake into squamous carcinoma cells (SCC) by fluorescence microscopy and the in vivo uptake into SCC tumors in an orthotopic xenograft nude mouse model under a surgical microscope. Conclusion: Absorption and emission properties of ICG in the different solvent environment, like in plasma and human serum albumin, differ from those in aqueous solution. Photoacoustic spectral imaging confirmed a peak shift towards longer wavelengths and an intensity increase of ICG when bound to the lipids. The SCC cells showed that the ICG containing liposomes bind to the cell surface but are not internalized in the SCC-9 cells after 60 minutes of incubation. We also showed here that ICG containing liposomal nanoparticles can be traced under a surgical camera in vivo in orthotopic SCC xenografts in mice.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


Sign in / Sign up

Export Citation Format

Share Document