scholarly journals Plastidic glucose-6-phosphate dehydrogenases are regulated to maintain activity in the light

2019 ◽  
Vol 476 (10) ◽  
pp. 1539-1551 ◽  
Author(s):  
Alyssa L. Preiser ◽  
Nicholas Fisher ◽  
Aparajita Banerjee ◽  
Thomas D. Sharkey

Abstract Glucose-6-phosphate dehydrogenase (G6PDH) can initiate the glucose-6-phosphate (G6P) shunt around the Calvin–Benson cycle. To understand the regulation of flux through this pathway, we have characterized the biochemical parameters and redox regulation of the three functional plastidic isoforms of Arabidopsis G6PDH. When purified, recombinant proteins were measured, all three exhibited significant substrate inhibition by G6P but not NADP+, making the determination of enzyme kinetic parameters complex. We found that the half-saturation concentration of G6PDH isoform 1 is increased under reducing conditions. The other two isoforms exhibit less redox regulation, however, isoform 2 is strongly inhibited by NADPH. Redox regulation of G6PDH1 can be partially reversed by hydrogen peroxide or protected against by the presence of its substrate, G6P. Overall, our results support the conclusion that G6PDH can have significant activity throughout the day and can be dynamically regulated to allow or prevent flux through the glucose-6-phosphate shunt.

2018 ◽  
Author(s):  
Alyssa L. Preiser ◽  
Aparajita Banerjee ◽  
Nicholas Fisher ◽  
Thomas D. Sharkey

AbstractFructose 6-phosphate is an intermediate in the Calvin-Benson cycle and can be acted on by phosphoglucoisomerase to make glucose 6-phosphate (G6P) for starch synthesis. A high concentration of G6P is favorable for starch synthesis but can also stimulate G6P dehydrogenase initiating the glucose-6-phosphate shunt an alternative pathway around the Calvin-Benson cycle. A low concentration of glucose 6-phosphate will limit this futile cycle. In order to understand the biochemical regulation of plastidic glucose 6-phosphate supply and consumption, we characterized biochemical parameters of two key enzymes, phosphoglucoisomerase (PGI) and G6P dehydrogenase (G6PDH). We have found that the plastidic PGI in has a higher Km for G6P compared to that for fructose 6-phosphate. The Km of G6PDH isoform 1 is increased under reducing conditions. The other two isoforms exhibit less redox regulation; isoform 2 is the most inhibited by NADPH. Our results support the conclusion that PGI restricts stromal G6P synthesis limiting futile cycling via G6PDH. It also acts like a one-way valve, allowing carbon to leave the Calvin-Benson cycle but not reenter. We found flexible redox regulation of G6PDH that could regulate the glucose-6-phosphate shunt.HighlightGlucose 6-phosphate stimulates glucose-6-phosphate dehydrogenase. This enzyme is less active during the day but retains significant activity that is very sensitive to the concentration of glucose 6-phopshate.


2005 ◽  
Vol 29 (1) ◽  
pp. 43-50
Author(s):  
Hanan Abdel Reda Mohammed

In the present study , 32 white mice Balb /C (two months age ) were used ,therewere divided into four equal groups . Three groups were injected with fungalsuspention of candida albicans in doses of 1x106 ,1x108 and 3x108 cell/ml,whereas the fourth group was regarded as control and injected with 0.5 mlnormal saline solution . All were dissected after 6 days of injection to study thephysiological effect of the yeast on blood , which include RBCand WBC count ,Hb concentration and PCV ratio . And on biochemical content whichinclude the determination of protein , glycogen and cholestrol in liver ,kidneyand muscles .The results showed that the number of RBC were decreased ,while WBCwere increased in the injected mice ,but there were no signifficant effect onPCV and Hb . On the other hand ,cholestrol values were decreased significantlyin the injected mice in comparison with control,but this decrease was varied indifferent tissues (P>0.01).The value was lower in liver ,whereas no signifficantdifference was found between Kidney and muscles . Protein values were notsignifficantly different in comparison with control , but it was different amongtissue studied .muscles was the highest value and the liver was lowest .Glycogen decreased signifficantly in comparison with control ,but not amongtissues.


Author(s):  
D.R. Rasmussen ◽  
N.-H. Cho ◽  
C.B. Carter

Domains in GaAs can exist which are related to one another by the inversion symmetry, i.e., the sites of gallium and arsenic in one domain are interchanged in the other domain. The boundary between these two different domains is known as an antiphase boundary [1], In the terminology used to describe grain boundaries, the grains on either side of this boundary can be regarded as being Σ=1-related. For the {110} interface plane, in particular, there are equal numbers of GaGa and As-As anti-site bonds across the interface. The equilibrium distance between two atoms of the same kind crossing the boundary is expected to be different from the length of normal GaAs bonds in the bulk. Therefore, the relative position of each grain on either side of an APB may be translated such that the boundary can have a lower energy situation. This translation does not affect the perfect Σ=1 coincidence site relationship. Such a lattice translation is expected for all high-angle grain boundaries as a way of relaxation of the boundary structure.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


1962 ◽  
Vol 08 (03) ◽  
pp. 434-441 ◽  
Author(s):  
Edmond R Cole ◽  
Ewa Marciniak ◽  
Walter H Seegers

SummaryTwo quantitative procedures for autoprothrombin C are described. In one of these purified prothrombin is used as a substrate, and the activity of autoprothrombin C can be measured even if thrombin is in the preparation. In this procedure a reaction mixture is used wherein the thrombin titer which develops in 20 minutes is proportional to the autoprothrombin C in the reaction mixture. A unit is defined as the amount which will generate 70 units of thrombin in the standardized reaction mixture. In the other method thrombin interferes with the result, because a standard bovine plasma sample is recalcified and the clotting time is noted. Autoprothrombin C shortens the clotting time, and the extent of this is a quantitative measure of autoprothrombin C activity.


1983 ◽  
Vol 50 (02) ◽  
pp. 563-566 ◽  
Author(s):  
P Hellstern ◽  
K Schilz ◽  
G von Blohn ◽  
E Wenzel

SummaryAn assay for rapid factor XIII activity measurement has been developed based on the determination of the ammonium released during fibrin stabilization. Factor XIII was activated by thrombin and calcium. Ammonium was measured by an ammonium-sensitive electrode. It was demonstrated that the assay procedure yields accurate and precise results and that factor XIII-catalyzed fibrin stabilization can be measured kinetically. The amount of ammonium released during the first 90 min of fibrin stabilization was found to be 7.8 ± 0.5 moles per mole fibrinogen, which is in agreement with the findings of other authors. In 15 normal subjects and in 15 patients suffering from diseases with suspected factor XIII deficiency there was a satisfactory correlation between the results obtained by the “ammonium-release-method”, Bohn’s method, and the immunological assay (r1 = 0.65; r2= 0.70; p<0.01). In 3 of 5 patients with paraproteinemias the values of factor XIII activity determined by the ammonium-release method were markedly lower than those estimated by the other methods. It could be shown that inhibitor mechanisms were responsible for these discrepancies.


2021 ◽  
Vol 1853 (1) ◽  
pp. 012037
Author(s):  
Y M Taay ◽  
M T Mohammed ◽  
R Abbas ◽  
A Ayad ◽  
M A Mahdi

Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1387-1395 ◽  
Author(s):  
Sudhir Kumar ◽  
Sudhindra R Gadagkar ◽  
Alan Filipski ◽  
Xun Gu

AbstractGenomic divergence between species can be quantified in terms of the number of chromosomal rearrangements that have occurred in the respective genomes following their divergence from a common ancestor. These rearrangements disrupt the structural similarity between genomes, with each rearrangement producing additional, albeit shorter, conserved segments. Here we propose a simple statistical approach on the basis of the distribution of the number of markers in contiguous sets of autosomal markers (CSAMs) to estimate the number of conserved segments. CSAM identification requires information on the relative locations of orthologous markers in one genome and only the chromosome number on which each marker resides in the other genome. We propose a simple mathematical model that can account for the effect of the nonuniformity of the breakpoints and markers on the observed distribution of the number of markers in different conserved segments. Computer simulations show that the number of CSAMs increases linearly with the number of chromosomal rearrangements under a variety of conditions. Using the CSAM approach, the estimate of the number of conserved segments between human and mouse genomes is 529 ± 84, with a mean conserved segment length of 2.8 cM. This length is &lt;40% of that currently accepted for human and mouse genomes. This means that the mouse and human genomes have diverged at a rate of ∼1.15 rearrangements per million years. By contrast, mouse and rat are diverging at a rate of only ∼0.74 rearrangements per million years.


Sign in / Sign up

Export Citation Format

Share Document