scholarly journals On the specificity of protein–protein interactions in the context of disorder

2021 ◽  
Vol 478 (11) ◽  
pp. 2035-2050
Author(s):  
Kaare Teilum ◽  
Johan G. Olsen ◽  
Birthe B. Kragelund

With the increased focus on intrinsically disordered proteins (IDPs) and their large interactomes, the question about their specificity — or more so on their multispecificity — arise. Here we recapitulate how specificity and multispecificity are quantified and address through examples if IDPs in this respect differ from globular proteins. The conclusion is that quantitatively, globular proteins and IDPs are similar when it comes to specificity. However, compared with globular proteins, IDPs have larger interactome sizes, a phenomenon that is further enabled by their flexibility, repetitive binding motifs and propensity to adapt to different binding partners. For IDPs, this adaptability, interactome size and a higher degree of multivalency opens for new interaction mechanisms such as facilitated exchange through trimer formation and ultra-sensitivity via threshold effects and ensemble redistribution. IDPs and their interactions, thus, do not compromise the definition of specificity. Instead, it is the sheer size of their interactomes that complicates its calculation. More importantly, it is this size that challenges how we conceptually envision, interpret and speak about their specificity.

Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1084 ◽  
Author(s):  
Chana G. Sokolik ◽  
Nasrin Qassem ◽  
Jordan H. Chill

WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein–protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP’s protein–protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier A. Iserte ◽  
Tamas Lazar ◽  
Silvio C. E. Tosatto ◽  
Peter Tompa ◽  
Cristina Marino-Buslje

Abstract Intrinsically disordered proteins/regions (IDPs/IDRs) are crucial components of the cell, they are highly abundant and participate ubiquitously in a wide range of biological functions, such as regulatory processes and cell signaling. Many of their important functions rely on protein interactions, by which they trigger or modulate different pathways. Sequence covariation, a powerful tool for protein contact prediction, has been applied successfully to predict protein structure and to identify protein–protein interactions mostly of globular proteins. IDPs/IDRs also mediate a plethora of protein–protein interactions, highlighting the importance of addressing sequence covariation-based inter-protein contact prediction of this class of proteins. Despite their importance, a systematic approach to analyze the covariation phenomena of intrinsically disordered proteins and their complexes is still missing. Here we carry out a comprehensive critical assessment of coevolution-based contact prediction in IDP/IDR complexes and detail the challenges and possible limitations that emerge from their analysis. We found that the coevolutionary signal is faint in most of the complexes of disordered proteins but positively correlates with the interface size and binding affinity between partners. In addition, we discuss the state-of-art methodology by biological interpretation of the results, formulate evaluation guidelines and suggest future directions of development to the field.


Author(s):  
Stefano Gianni ◽  
Per Jemth

Abstract Intrinsically disordered protein regions may fold upon binding to an interaction partner. It is often argued that such coupled binding and folding enables the combination of high specificity with low affinity. The basic tenet is that an unfavorable folding equilibrium will make the overall binding weaker while maintaining the interaction interface. While theoretically solid, we argue that this concept may be misleading for intrinsically disordered proteins. In fact, experimental evidence suggests that interactions of disordered regions usually involve extended conformations. In such cases, the disordered region is exceptionally unlikely to fold into a bound conformation in the absence of its binding partner. Instead, these disordered regions can bind to their partners in multiple different conformations and then fold into the native bound complex, thus, if anything, increasing the affinity through folding. We concede that (de)stabilization of native structural elements such as helices will modulate affinity, but this could work both ways, decreasing or increasing the stability of the complex. Moreover, experimental data show that intrinsically disordered binding regions display a range of affinities and specificities dictated by the particular side chains and length of the disordered region and not necessarily by the fact that they are disordered. We find it more likely that intrinsically disordered regions are common in protein–protein interactions because they increase the repertoire of binding partners, providing an accessible route to evolve interactions rather than providing a stability–affinity trade-off.


2019 ◽  
Vol 10 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Irrem-Laareb Mohammad ◽  
Borja Mateos ◽  
Miquel Pons

AbstractWe define the disordered boundary of the cell (DBC) as the system formed by membrane tethered intrinsically disordered protein regions, dynamically coupled to the underlying membrane.The emerging properties of the DBC makes it a global system of study, which cannot be understood from the individual properties of their components. Similarly, the properties of lipid bilayers cannot be understood from just the sum of the properties of individual lipid molecules.The highly anisotropic confined environment, restricting the position and orientation of interacting sites, is affecting the properties of individual disordered proteins. In fact, the collective effect caused by high concentrations of disordered proteins extend beyond the sum of individual effects.Examples of emerging properties of the DBC include enhanced protein-protein interactions, protein-driven phase separations, Z-compartmentalization, and protein modulated electrostatics.


2018 ◽  
Vol 4 (10) ◽  
pp. eaau4130 ◽  
Author(s):  
Per Jemth ◽  
Elin Karlsson ◽  
Beat Vögeli ◽  
Brenda Guzovsky ◽  
Eva Andersson ◽  
...  

In every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new protein-protein interactions are poorly understood. We have used nuclear magnetic resonance spectroscopy to investigate the changes in structure and dynamics during the evolution of a protein-protein interaction involving the intrinsically disordered CREBBP (CREB-binding protein) interaction domain (CID) and nuclear coactivator binding domain (NCBD) from the transcriptional coregulators NCOA (nuclear receptor coactivator) and CREBBP/p300, respectively. The most ancient low-affinity “Cambrian-like” [540 to 600 million years (Ma) ago] CID/NCBD complex contained less secondary structure and was more dynamic than the complexes from an evolutionarily younger “Ordovician-Silurian” fish ancestor (ca. 440 Ma ago) and extant human. The most ancient Cambrian-like CID/NCBD complex lacked one helix and several interdomain interactions, resulting in a larger solvent-accessible surface area. Furthermore, the most ancient complex had a high degree of millisecond-to-microsecond dynamics distributed along the entire sequences of both CID and NCBD. These motions were reduced in the Ordovician-Silurian CID/NCBD complex and further redistributed in the extant human CID/NCBD complex. Isothermal calorimetry experiments show that complex formation is enthalpically favorable and that affinity is modulated by a largely unfavorable entropic contribution to binding. Our data demonstrate how changes in structure and motion conspire to shape affinity during the evolution of a protein-protein complex and provide direct evidence for the role of structural, dynamic, and frustrational plasticity in the evolution of interactions between intrinsically disordered proteins.


2021 ◽  
Vol 8 ◽  
Author(s):  
Uroš Zavrtanik ◽  
San Hadži ◽  
Jurij Lah

Protein interactions mediated by the intrinsically disordered proteins (IDPs) are generally associated with lower affinities compared to those between globular proteins. Here, we characterize the association between the intrinsically disordered HigA2 antitoxin and its globular target HigB2 toxin from Vibrio cholerae using competition ITC experiments. We demonstrate that this interaction reaches one of the highest affinities reported for IDP-target systems (KD = 3 pM) and can be entirely attributed to a short, 20-residue-long interaction motif that folds into α-helix upon binding. We perform an experimentally based decomposition of the IDP-target association parameters into folding and binding contributions, which allows a direct comparison of the binding contribution with those from globular ultra-high affinity binders. We find that the HigA2-HigB2 interface is energy optimized to a similar extent as the interfaces of globular ultra-high affinity complexes, such as barnase-barstar. Evaluation of other ultra-high affinity IDP-target systems shows that a strategy based on entropy optimization can also achieve comparably high, picomolar affinities. Taken together, these examples show how IDP-target interactions achieve picomolar affinities either through enthalpy optimization (HigA2-HigB2), resembling the ultra-high affinity binding of globular proteins, or via bound-state fuzziness and entropy optimization (CcdA-CcdB, histone H1-prothymosin α).


2020 ◽  
Vol 71 (1) ◽  
pp. 391-414 ◽  
Author(s):  
Lauren Ann Metskas ◽  
Elizabeth Rhoades

Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein–protein interactions involving IDPs, and IDPs in complex experimental milieus.


2018 ◽  
Author(s):  
Ryo Hayama ◽  
Mirco Sorci ◽  
John J. Keating ◽  
Lee M. Hecht ◽  
Joel L. Plawsky ◽  
...  

ABSTRACTProtein-protein interactions are central to biological processes and the methods to thoroughly characterize them are of great interest. In vitro methods to examine protein-protein interactions are generally categorized into two classes: in-solution and surface-based methods. Here, using the multivalent interactions involved in nucleocytoplasmic transport as a model system, we examined the utility of three surface-based methods in characterizing rapid interactions involving intrinsically disordered proteins: atomic force microscopy, quartz crystal microbalance with dissipation, and surface plasmon resonance. Although results were comparable to those of previous reports, the existence of previously overlooked mass transport limitations was revealed. Additional experiments with a loss-of-interaction mutant variant demonstrated the existence of additional physical events and an uncharacterized binding mode. These results suggest the binding events that take place on the surface are more complex than initially assumed, prompting a need for re-interpretation of previous data.


Sign in / Sign up

Export Citation Format

Share Document