scholarly journals Inhibition of translation in liver polyribosomes by a new substituted thiopseudourea with antitumour action

1974 ◽  
Vol 138 (2) ◽  
pp. 129-141 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Flor Herrera Quijada

A new thiopseudourea, S-(10-undecen-1-yl)isothiouronium iodide (compound AHR-1911), was tested for antitumour action and shown to inhibit considerably the growth of the Walker carcinoma in rats. The mechanism of its effect on protein and nucleic acid synthesis was then studied with systems in vitro from rat liver. In incubations of liver slices, 1.4mm-compound AHR-1911 decreased by 96% the incorporation of [14C]leucine into microsomal proteins, and mitochondrial protein synthesis measured in the presence of cycloheximide was decreased by 44%. At lower doses, translation, as well as the incorporation of [3H]uridine into RNA, was also considerably impaired, compound AHR-1911 being the most active of all the thiopseudoureas tested whereas undecylenic acid and thiourea by themselves showed practically no inhibition. Protein synthesis by cytoplasmic ribosomes (microsomes and C-polyribosomes) was inhibited by compound AHR-1911 at different concentrations (72% at 0.42mm), and again the other related compounds were much less effective, with the exception of one antileukaemic thiopseudourea. The same occurred with the poly(U)-stimulated incorporation of phenylalanine. The puromycin reaction with pulse-labelled C-ribosomes was strongly inhibited, particularly when preincubation with compound AHR-1911 preceded the addition of puromycin, with no release of nascent chains by the thiopseudourea alone. In the presence of GTP and pH5 fraction, to induce translocation and transform all the ribosomes to the donor state, the percentage inhibition remained the same. The ribosomes incubated with the drug are aggregated, as shown by the polyribosome profile, but, when excess of inhibitor was removed, the activity in protein synthesis and the puromycin reaction was restored, indicating that the inhibition is not due to the polyribosomal aggregation. These results suggest that the effect on translation with both 55S and 80S ribosomes is derived from inhibition of chain elongation at the level of transpeptidation and not translocation, probably together with the interference with transcription playing a role in the antitumour activity.

1981 ◽  
Vol 90 (1) ◽  
pp. 108-115 ◽  
Author(s):  
K G Burnett ◽  
I E Scheffler

A defect in mitochondrial protein synthesis has previously been identified in the respiration-deficient Chinese hamster lung fibroblast mutant V79-G7. The present work extends the characterization of this mutant. A more sensitive analysis has shown that mutant mitochondria synthesize all mitochondrially encoded peptides, but in significantly reduced amounts. This difference is also seen when isolated mitochondria are tested for in vitro protein synthesis. To distinguish between a defect in the translational machinery and a defect in the transcription of mitochondrial DNA, we investigated the synthesis of the 16S and 12S mitochondrial rRNA species and found them to be made in normal amounts in G7 mitochondria. These rRNA species appear to be assembled into subunits whose sedimentation behavior is virtually indistinguishable from that of the wild-type subunits. We also examined the consequences of the defect in mitochondrial protein synthesis on mutant cells and their mitochondria-utilizing techniques of electron microscopy, two-dimensional gel electrophoresis and immunochemical analysis. G7 mitochondria have a characteristic ultrastructure distinguished by predominantly tubular cristae, but the overall biochemical composition of mitochondrial membrane and matrix fractions appears essentially unaltered except for the absence of a few characteristic peptides. Specifically, we identify the absence of two mitochondrially encoded subunits of cytochrome c oxidase on two-dimensional gels and demonstrate a drastic reduction of both cytoplasmically and mitochondrially synthesized subunits of enzyme in immunoprecipitates of G7 mitochondria.


1972 ◽  
Vol 54 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Paul M. Lizardi ◽  
David J. L. Luck

The intracellular site of synthesis of mitochondrial ribosomal proteins (MRP) in Neurospora crassa has been investigated using three complementary approaches. (a) Mitochondrial protein synthesis in vitro: Tritium-labeled proteins made by isolated mitochondria were compared to 14C-labeled marker MRP by cofractionation in a two-step procedure involving isoelectric focusing and polyacrylamide gel electrophoresis. Examination of the electrophoretic profiles showed that essentially none of the peaks of in vitro product corresponded exactly to any of the MRP marker peaks. (b) Sensitivity of in vivo MRP synthesis to chloramphenicol: Cells were labeled with leucine-3H in the presence of chloramphenicol, mitochondrial ribosomal subunits were subsequently isolated, and their proteins fractionated by isoelectric focusing followed by gel electrophoresis. The labeling of every single MRP was found to be insensitive to chloramphenicol, a selective inhibitor of mitochondrial protein synthesis. (c) Sensitivity of in vivo MRP synthesis to anisomycin: We have found this antibiotic to be a good selective inhibitor of cytoplasmic protein synthesis in Neurospora. In the presence of anisomycin the labeling of virtually all MRP is inhibited to the same extent as the labeling of cytoplasmic ribosomal proteins. On the basis of these three types of studies we conclude that most if not all 53 structural proteins of mitochondrial ribosomal subunits in Neurospora are synthesized by cytoplasmic ribosomes.


FEBS Letters ◽  
1973 ◽  
Vol 29 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Nader G. Ibrahim ◽  
James P. Burke ◽  
Diana S. Beattie

1991 ◽  
Vol 11 (4) ◽  
pp. 2236-2244 ◽  
Author(s):  
A Chomyn ◽  
G Meola ◽  
N Bresolin ◽  
S T Lai ◽  
G Scarlato ◽  
...  

A severe mitochondrial protein synthesis defect in myoblasts from a patient with mitochondrial myopathy was transferred with myoblast mitochondria into two genetically unrelated mitochondrial DNA (mtDNA)-less human cell lines, pointing to an mtDNA alteration as being responsible and sufficient for causing the disease. The transfer of the defect correlated with marked deficiencies in respiration and cytochrome c oxidase activity of the transformants and the presence in their mitochondria of mtDNA carrying a tRNA(Lys) mutation. Furthermore, apparently complete segregation of the defective genotype and phenotype was observed in the transformants derived from the heterogeneous proband myoblast population, suggesting that the mtDNA heteroplasmy in this population was to a large extent intercellular. The present work thus establishes a direct link between mtDNA alteration and a biochemical defect.


1992 ◽  
Vol 284 (1) ◽  
pp. 47-52 ◽  
Author(s):  
P Landini ◽  
E Corti ◽  
B P Goldstein ◽  
M Denaro

Purpuromycin, an antibiotic active against both fungi and bacteria, shows different modes of action against these two kinds of micro-organisms; in Candida albicans it inhibits RNA synthesis, whereas in Bacillus subtilis protein synthesis is primarily affected, with DNA and RNA synthesis blocked at higher concentrations of the drug. In bacterial cell-free protein-synthesis systems, purpuromycin did not inhibit synthesis from endogenous mRNA (elongation of peptides initiated within the intact cell) but inhibited MS2-phase RNA-dependent protein synthesis (which requires initiation) by 50% at 0.1 mg/l. Poly(U)-directed polyphenylalanine synthesis was 50% inhibited by 20 mg of purpuromycin/l when added to a complete system; however, when purpuromycin was preincubated with ribosomes dissociated into 30 S and 50 S subunits, the concentration for 50% inhibition fell to 0.1 mg/l. By contrast, in a C. albicans cell-free system poly(U)-directed polyphenylalanine synthesis was partially inhibited only at 200 mg/l. Purpuromycin also inhibited polynucleotide synthesis in vitro in reactions using Escherichia coli or wheat-germ RNA polymerases or E. coli DNA polymerase I. We suggest that in bacteria the primary target of purpuromycin is on ribosomes and that its action precedes the elongation step of protein synthesis. The effect on nucleic acid synthesis in both fungi and bacteria may be due to interaction of purpuromycin with DNA.


1988 ◽  
Vol 8 (8) ◽  
pp. 3311-3315 ◽  
Author(s):  
T Kaneko ◽  
T Watanabe ◽  
M Oishi

When mouse erythroleukemia (MEL) cells were incubated in the presence of chloramphenicol (a specific inhibitor for mitochondrial protein synthesis) during the early stage of in vitro erythroid differentiation, the number of induced erythroid cells was greatly reduced. By use of cell fusion between two genetically marked MEL cells, this finding was further investigated. We found that the drug, along with other agents which inhibit mitochondrial protein synthesis, blocked the induction and turnover of the DMSO-inducible intracellular-erythroid-inducing activity (differentiation-inducing factor II) in a manner similar to that of cycloheximide, an inhibitor for nuclear protein synthesis. The inhibitory effect was confirmed by directly assaying differentiation-inducing factor II in the cell extracts. These results strongly suggest that mitochondrial protein synthesis is closely associated with in vitro erythroid differentiation of MEL cells.


1975 ◽  
Vol 146 (1) ◽  
pp. 127-131 ◽  
Author(s):  
L Montanaro ◽  
S Sperti ◽  
A Mattioli ◽  
G Testoni ◽  
F Stirpe

The binding of EF2 (elongation factor 2) and of ADP-ribosyl-EF 2 to rat liver ribosomes is inhibited by ricin. This result suggests that the native enzyme and its ADP-ribose derivative have the same or closely related binding sites on the ribosome. The inhibition by ricin of the binding of EF 2 to ribosomes is consistent with the previous observation that ricin affects EF 2-catalysed translocation during polypeptide chain elongation.


1976 ◽  
Vol 156 (1) ◽  
pp. 7-13 ◽  
Author(s):  
S Sperti ◽  
L Montanaro ◽  
A Mattioli ◽  
G Testoni ◽  
F Stirpe

The effects of crotin I and crotin II on the partial reactions of polypeptide chain elongation were investigated and compared with the known effects of ricin. Crotin II was a more powerful inhibitor than crotin I, but no qualitative differences between the two crotins were found. Rat liver ribosomes, preincubated with crotins and washed through sucrose gradients, remained inactive in protein synthesis. Among the individual steps of elongation, the peptidyltransferase reaction was unaffected by crotins, but some of the reactions that involve the interaction of elongation factors 1 and 2 with ribosomes were modified. A strong inhibition of the binding of elongation factor 2 to ribosomes and a stimulation of the elongation factor2-dependent GTP hydrolysis were observed; this indicates the formation of a very unstable elongation factor 2-GDP-ribosome complex, which, however, allows a single round of translocation to take place in the presence ofelongation factor 2 and added GTP. The elongation factor 1-dependent GTP hydrolysis was inhibited by crotins, whereas the enzymic binding of aminoacyl-tRNA, to both rat liver and Artemia salina ribosomes, was scarcely affected. In a protein-synthesizing system the inhibition by crotins and by ricin leads to a block of the nascent peptides on the ribosomal aminoacyl-tRNA site, an effect consistent with inhibition at the level of translocation. The mechanism of action of crotins appears to be very similar to that of ricin.


1999 ◽  
Vol 73 (12) ◽  
pp. 10104-10112 ◽  
Author(s):  
David J. Barton ◽  
B. Joan Morasco ◽  
James B. Flanegan

ABSTRACT Poliovirus has a single-stranded RNA genome of positive polarity that serves two essential functions at the start of the viral replication cycle in infected cells. First, it is translated to synthesize viral proteins and, second, it is copied by the viral polymerase to synthesize negative-strand RNA. We investigated these two reactions by using HeLa S10 in vitro translation-RNA replication reactions. Preinitiation RNA replication complexes were isolated from these reactions and then used to measure the sequential synthesis of negative- and positive-strand RNAs in the presence of different protein synthesis inhibitors. Puromycin was found to stimulate RNA replication overall. In contrast, RNA replication was inhibited by diphtheria toxin, cycloheximide, anisomycin, and ricin A chain. Dose-response experiments showed that precisely the same concentration of a specific drug was required to inhibit protein synthesis and to either stimulate or inhibit RNA replication. This suggested that the ability of these drugs to affect RNA replication was linked to their ability to alter the normal clearance of translating ribosomes from the input viral RNA. Consistent with this idea was the finding that the protein synthesis inhibitors had no measurable effect on positive-strand synthesis in normal RNA replication complexes. In marked contrast, negative-strand synthesis was stimulated by puromycin and was inhibited by cycloheximide. Puromycin causes polypeptide chain termination and induces the dissociation of polyribosomes from mRNA. Cycloheximide and other inhibitors of polypeptide chain elongation “freeze” ribosomes on mRNA and prevent the normal clearance of ribosomes from viral RNA templates. Therefore, it appears that the poliovirus polymerase was not able to dislodge translating ribosomes from viral RNA templates and mediate the switch from translation to negative-strand synthesis. Instead, the initiation of negative-strand synthesis appears to be coordinately regulated with the natural clearance of translating ribosomes to avoid the dilemma of ribosome-polymerase collisions.


Sign in / Sign up

Export Citation Format

Share Document