scholarly journals The effects of hyperphenylalaninaemia on the concentrations of aminoacyl-transfer ribonucleic acid in vivo. A mechanism for the inhibition of neural protein synthesis by phenylalanine

1977 ◽  
Vol 162 (3) ◽  
pp. 527-537 ◽  
Author(s):  
J V Hughes ◽  
T C Johnson

An acute administration of phenylalanine to neonatal animals has been reported to result in large decreases in the intracellular concentrations of several essential amino acids in neural tissue, as well as an inhibition of neural protein synthesis. The present report evaluates the effects of the loss of amino acids on the concentrations of aminoacyl-tRNA in vivo, with the view that an alteration in the concentrations of specific aminoacyl-tRNA molecules could be the rate-limiting step in brain protein metabolism during hyperphenylalaninaemia. tRNA was isolated from saline- and phenylalanine-injected mice 30-45 min after injection, by using a procedure designed to maintain the concentrations of aminoacyl-tRNA present in vivo. Periodate oxidation of the non-acylated tRNA and aminoacylation with radioactively labelled amino acids was used to determine the proportion of tRNA that was present in vivo as aminoacyl-tRNA. Although decreases in the intracellular concentrations of alanine, lysine and leucine were observed after phenylalanine administration, the concentrations of alanyl-tRNA, lysyl-tRNA and leucyl-tRNA actually increased by 15%. Although tryptophan has been suggested to be rate-limiting during hyperphenylalaninaemia, the proportion of tryptophan tRNA that was acylated was maximal in both normal and hyperphenylalaninaemic animals. This unexpected increase in aminoacyl-tRNA concentration is discussed as perhaps a secondary effect resulting from the phenylalanine-induced inhibition of protein synthesis. In contrast, the proportion of methionine tRNA that was acylated in vivo after phenylalanine administration was demonstrated to be decreased by approx. 17%. When the isoaccepting species of methionine tRNA were separated by reverse-phase column chromatography, three species were separated, one of which was demonstrated to be the initiator species, tRNAfMet, by the selective aminoacylation and formylation with Escherichia coli enzymes. After the administration of phenylalanine, the acylation of each of the three methionine tRNA species was decreased, with the initiator species being lowered by 10%. This effect on aminoacylation of tRNAfMet may be the primary step by which phenylalanine affects neural protein synthesis, and this is consistent with previous reports that re-initiation may be inhibited during hyperphenylalaninaemia.

1971 ◽  
Vol 122 (3) ◽  
pp. 267-276 ◽  
Author(s):  
D. C. N. Earl ◽  
Susan T. Hindley

1. At 3 min after an intravenous injection of radioactive amino acids into the rat, the bulk of radioactivity associated with liver polyribosomes can be interpreted as growing peptides. 2. In an attempt to identify the rate-limiting step of protein synthesis in vivo and in vitro, use was made of the action of puromycin at 0°C, in releasing growing peptides only from the donor site, to study the distribution of growing peptides between the donor and acceptor sites. 3. Evidence is presented that all growing peptides in a population of liver polyribosomes labelled in vivo are similarly distributed between the donor and acceptor sites, and that the proportion released by puromycin is not an artifact of methodology. 4. The proportion released by puromycin is about 50% for both liver and muscle polyribosomes labelled in vivo, suggesting that neither the availability nor binding of aminoacyl-tRNA nor peptide bond synthesis nor translocation can limit the rate of protein synthesis in vivo. Attempts to alter this by starvation, hypophysectomy, growth hormone, alloxan, insulin and partial hepatectomy were unsuccessful. 5. Growing peptides on liver polyribosomes labelled in a cell-free system in vitro or by incubating hemidiaphragms in vitro were largely in the donor site, suggesting that either the availability or binding of aminoacyl-tRNA, or peptide bond synthesis, must be rate limiting in vitro and that the rate-limiting step differs from that in vivo. 6. Neither in vivo nor in the hemidiaphragm system in vitro was a correlation found between the proportion of growing peptides in the donor site and changes in the rate of incorporation of radioactivity into protein. This could indicate that the intracellular concentration of amino acids or aminoacyl-tRNA limits the rate of protein synthesis and that the increased incorporation results from a rise to a higher but still suboptimum concentration.


2001 ◽  
Vol 280 (1) ◽  
pp. E31-E39 ◽  
Author(s):  
Cinzia L. Paolini ◽  
Giacomo Meschia ◽  
Paul V. Fennessey ◽  
Adrian W. Pike ◽  
Cecilia Teng ◽  
...  

Under normal physiological conditions, essential amino acids (EA) are transported from mother to fetus at different rates. The mechanisms underlying these differences include the expression of several amino acid transport systems in the placenta and the regulation of EA concentrations in maternal and fetal plasma. To study the relation of EA transplacental flux to maternal plasma concentration, isotopes of EA were injected into the circulation of pregnant ewes. Measurements of concentration and molar enrichment in maternal and fetal plasma and of umbilical plasma flow were used to calculate the ratio of transplacental pulse flux to maternal concentration (clearance) for each EA. Five EA (Met, Phe, Leu, Ile, and Val) had relatively high and similar clearances and were followed, in order of decreasing clearance, by Trp, Thr, His, and Lys. The five high-clearance EA showed strong correlation ( r 2 = 0.98) between the pulse flux and maternal concentration. The study suggests that five of the nine EA have similar affinity for a rate-limiting placental transport system that mediates rapid flux from mother to fetus, and that differences in transport rates within this group of EA are determined primarily by differences in maternal plasma concentration.


1978 ◽  
Vol 174 (3) ◽  
pp. 931-938 ◽  
Author(s):  
C J Kelly ◽  
T C Johnson

The phenylalanine analogues p-chlorophenylalanine and alpha-methylphenylalanine were used to inhibit phenylalanine hydroxylase in animal models for phenylketonuria. The present report examines the affects of these analogues on the metabolism of neuroblastoma cells. p-Chlorophenylalanine inhibited growth and was toxic to neuroblastoma cells. Although in vivo this analogue increased cell monoribosomes by 42%, it did not significantly affect poly(U)-directed protein synthesis in vitro. P-Chlorophenylalanine did not compete with phenylalanine or tyrosine for aminoacylation of tRNA and was therefore not substituted for those amino acids in nascent polypeptides. The initial cellular uptake of various large neutral amino acids was inhibited by this analogue but did not affect the flux of amino acids already in the cell; this suggested that an alteration of the cell's amino acid pools was not responsible for the cytotoxicity of the analogues. In contrast with p-chlorophenylalanine, alpha-methylphenylalanine did not exert these direct toxic effects because the administration of alpha-methylphenylalanine in vivo did not affect brain polyribosomes and a comparable concentration of this analogue was neither growth inhibitory nor cytotoxic to neuroblastoma cells in culture. The suitability of each analogue as an inhibitor of phenylalanine hydroxylase in animal models for phenylketonuria is discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fan Liu ◽  
Siniša Bratulić ◽  
Alan Costello ◽  
Teemu P. Miettinen ◽  
Ahmed H. Badran

AbstractIn bacteria, ribosome kinetics are considered rate-limiting for protein synthesis and cell growth. Enhanced ribosome kinetics may augment bacterial growth and biomanufacturing through improvements to overall protein yield, but whether this can be achieved by ribosome-specific modifications remains unknown. Here, we evolve 16S ribosomal RNAs (rRNAs) from Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae towards enhanced protein synthesis rates. We find that rRNA sequence origin significantly impacted evolutionary trajectory and generated rRNA mutants with augmented protein synthesis rates in both natural and engineered contexts, including the incorporation of noncanonical amino acids. Moreover, discovered consensus mutations can be ported onto phylogenetically divergent rRNAs, imparting improved translational activities. Finally, we show that increased translation rates in vivo coincide with only moderately reduced translational fidelity, but do not enhance bacterial population growth. Together, these findings provide a versatile platform for development of unnatural ribosomal functions in vivo.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xu Tan ◽  
Sheng Zhang ◽  
Wei Song ◽  
Jia Liu ◽  
Cong Gao ◽  
...  

AbstractIn this study, a four-enzyme cascade pathway was developed and reconstructed in vivo for the production of d-p-hydroxyphenylglycine (D-HPG), a valuable intermediate used to produce β-lactam antibiotics and in fine-chemical synthesis, from l-tyrosine. In this pathway, catalytic conversion of the intermediate 4-hydroxyphenylglyoxalate by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) was identified as the rate-limiting step, followed by application of a mechanism-guided “conformation rotation” strategy to decrease the hydride-transfer distance d(C6HDAP−C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg−1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50-g/L l-tyrosine in 24 h, with 92.5% conversion, 71.5% isolated yield, and > 99% enantiomeric excess in a 3-L fermenter. This four-enzyme cascade provides an efficient enzymatic approach for the industrial production of D-HPG from cheap amino acids.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


1971 ◽  
Vol 124 (2) ◽  
pp. 385-392 ◽  
Author(s):  
R. W. Wannemacher ◽  
C. F. Wannemacher ◽  
M. B. Yatvin

Weanling (23-day-old) rats were fed on either a low-protein diet (6% casein) or a diet containing an adequate amount of protein (18% casein) for 28 days. Hepatic cells from animals fed on the deficient diet were characterized by markedly lower concentrations of protein and RNA in all cellular fractions as compared with cells from control rats. The bound rRNA fraction was decreased to the greatest degree, whereas the free ribosomal concentrations were only slightly less than in control animals. A good correlation was observed between the rate of hepatic protein synthesis in vivo and the cellular protein content of the liver. Rates of protein synthesis both in vivo and in vitro were directly correlated with the hepatic concentration of individual free amino acids that are essential for protein synthesis. The decreased protein-synthetic ability of the ribosomes from the liver of protein-deprived rats was related to a decrease in the number of active ribosomes and heavy polyribosomes. The lower ribosomal content of the hepatocytes was correlated with the decreased concentration of essential free amino acids. In the protein-deprived rats, the rate of accumulation of newly synthesized cytoplasmic rRNA was markedly decreased compared with control animals. From these results it was concluded that amino acids regulate protein synthesis (1) by affecting the number of ribosomes that actively synthesize protein and (2) by inhibiting the rate of synthesis of new ribosomes. Both of these processes may involve the synthesis of proteins with a rapid rate of turnover.


1995 ◽  
Vol 14 ◽  
pp. 20
Author(s):  
R. Barazzoni ◽  
M. Zanetti ◽  
M. Vettore ◽  
S. Normand ◽  
D. Bruttomesso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document