scholarly journals Preliminary characterization of two thymus-dependent xenoantigens from mouse lymphocytes

1977 ◽  
Vol 163 (2) ◽  
pp. 211-217 ◽  
Author(s):  
I S Trowbridge ◽  
M Nilsen-Hamilton ◽  
R T Hamilton ◽  
M J Bevan

Preliminary characterization of two mouse thymus-dependent (T) lymphocyte xenoantigens, T25 and T200, which are selectively labelled by lactoperoxidase-catalysed iodination of T-cells, is described. Both molecules are membrane-bound glycoproteins. Fractionation of membrane vesicles prepared from BW5147 lymphoma cells by sedimentation through sucrose density gradients show that antigens T25 and T200 are in fractions enriched with plasma membrane. Moreover antigen T200 is partially degraded when viable cells are treated briefly with low concentrations of trypsin. Both molecules are efficiently solubilized in buffers containing sodium deoxycholate or Nonidet P-40, as measured by failure to sediment at 100000g for 60min. However, gel filtration on Sepharose 6B showed the presence of aggregated material in Nonidet P-40 extracts which was not found in deoxycholate-solubilized membranes. After solubilization in detergent, antigens T25 and T200 bind to, and may be specifically eluted from, columns of pea lectin--Sepharose or concanavalin A--Sepharose. Both molecules are heterogeneous when examined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. As judged by its binding to columns of pea lectin, at least part of the heterogeneity of mouse thymocyte antigen T25 resides in its carbohydrate moiety.

2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


1998 ◽  
Vol 180 (2) ◽  
pp. 388-394 ◽  
Author(s):  
Masahiro Furutani ◽  
Toshii Iida ◽  
Shigeyuki Yamano ◽  
Kei Kamino ◽  
Tadashi Maruyama

ABSTRACT A peptidyl prolyl cis-trans isomerase (PPIase) was purified from a thermophilic methanogen, Methanococcus thermolithotrophicus. The PPIase activity was inhibited by FK506 but not by cyclosporine. The molecular mass of the purified enzyme was estimated to be 16 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 42 kDa by gel filtration. The enzyme was thermostable, with the half-lives of its activity at 90 and 100°C being 90 and 30 min, respectively. The catalytic efficiencies (k cat/Km ) measured at 15°C for the peptidyl substrates,N-succinyl-Ala-Leu-Pro-Phe-p-nitroanilide andN-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, were 0.35 and 0.20 μM−1 s−1, respectively, in chymotrypsin-coupled assays. The purified enzyme was sensitive to FK506 and therefore was called MTFK (M. thermolithotrophicusFK506-binding protein). The MTFK gene (462 bp) was cloned from anM. thermolithotrophicus genomic library. The comparison of the amino acid sequence of MTFK with those of other FK506-binding PPIases revealed that MTFK has a 13-amino-acid insertion in the N-terminal region that is unique to thermophilic archaea. The relationship between the thermostable nature of MTFK and its structure is discussed.


1999 ◽  
Vol 181 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hisayo Ono ◽  
Kazuhisa Sawada ◽  
Nonpanga Khunajakr ◽  
Tao Tao ◽  
Mihoko Yamamoto ◽  
...  

ABSTRACT 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Km s of 9.1 mM forl-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.


1998 ◽  
Vol 64 (2) ◽  
pp. 789-792 ◽  
Author(s):  
Giuliano Degrassi ◽  
Benedict C. Okeke ◽  
Carlo V. Bruschi ◽  
Vittorio Venturi

ABSTRACT Bacillus pumilus PS213 was found to be able to release acetate from acetylated xylan. The enzyme catalyzing this reaction has been purified to homogeneity and characterized. The enzyme was secreted, and its production was induced by corncob powder and xylan. Its molecular mass, as determined by gel filtration, is 190 kDa, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of 40 kDa. The isoelectric point was found to be 4.8, and the enzyme activity was optimal at 55°C and pH 8.0. The activity was inhibited by most of the metal ions, while no enhancement was observed. The Michaelis constant (Km ) andV max for α-naphthyl acetate were 1.54 mM and 360 μmol min−1 mg of protein−1, respectively.


1978 ◽  
Vol 176 (1) ◽  
pp. 283-294 ◽  
Author(s):  
J G Heathcote ◽  
C H J Sear ◽  
M E Grant

1. Isolated rat lens capsules synthesized hydroxy[3H]proline-containing polypeptides when incubated with [3H]proline. 2. The collagenous polypeptides synthesized during a 2 h incubation were analyzed by both gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and shown to have an apparent mol.wt. of approx. 180,000. 3. No evidence was obtained for conversion of these polypeptides into a lower-molecular-weight species in experiments where capsules were labelled for 2 h and chased with non-radioactive proline for up to 22 h. However, a time-dependent incorporation of the 180,000-mol.wt. species into a larger collagenous component was observed and this could be prevented by the inclusion of beta-aminopropionitrile in the incubation medium. 4. The radioactive components synthesized by the capsules correspond to subunits of the intact lens capsule and the direct incorporation of the polypeptide of mol.wt. 180,000 into deoxycholate-insoluble basement membrane was demonstrated.


1985 ◽  
Vol 63 (5) ◽  
pp. 341-347 ◽  
Author(s):  
F. Manganaro ◽  
A. Kuksis

We have purified the monoacylglycerol acyltransferase from rat small intestinal mucosa to homogeneity by a combination of hydrophobic absorption, guanidine dissociation, and gel filtration. The purified enzyme gives a single band of 37 000 daltons on sodium dodecyl sulphate – polyacrylamide gel electrophoresis. The enzyme has a specific activity of about 5900 nmol/mg per hour and represents 0.12% of total cell protein, corresponding to about a 600-fold purification. The enzyme does not acylate diacylglycerols to triacylglycerols, which is consistent with the separate physical existence of the mono- and di-acylglycerol acyltransferases. The enzyme acylates the 2-monoacylglycerols to yield an essentially racemic mixture of diacylglycerols. It does not acylate glycerol 3-phosphate.


1979 ◽  
Vol 181 (3) ◽  
pp. 667-676 ◽  
Author(s):  
M Wohllebe ◽  
D J Carmichael

alpha- and beta-Chains were isolated by sequential ion-exchange and gel-filtration chromatography of guanidinium chloride-soluble dentine collagen obtained from Tris/NaCl-extracted EDTA-demineralized lathyritic-rat incisors. The alpha-chains were identified as alpha 1 I and alpha 2 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and amino acid analysis of the intact chains and their CNBr peptides. The dentine alpha-chains exhibited higher lysine hydroxylation and phosphate content, but lower hydroxylysine glycosylation, than alpha-chains from skin. Increased lysine hydroxylation was observed in the helical sequences. The alpha 1 I/alpha 2 ratio was approx. 3:1, and was presumably due to the presence of (alpha 1 I)3 molecules along with (alpha 1 I)2 alpha 2 molecules as shown recently for neutral-salt-soluble dentine collagen [Wohllebe & Carmichael (1978) Eur. J. Biochem. 92, 183–188]. In the borohydride-reduced beta 11- and beta 12-chains from guanidinium chloride-soluble dentine collagen, the reduced cross-links hydroxylysinohydroxynorleucine and hydroxylysinonorleucine were present. A higher proportion of hydroxylysinonorleucine in the reduced beta 12-chain probably reflects differences in extent of hydroxylation of specific lysine residues of the alpha 1 I- and alpha 2-chains.


1981 ◽  
Vol 60 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Naotika Toki ◽  
Hiroyuki Sumi ◽  
Sumiyoshi Takasugi

1. A kallikrein-like enzyme in plasma of patients with acute pancreatitis was further purified by successive hydroxyapatite/cellulose and Sepharose-4B column chromatography. 2. By these procedures 0.26 mg of purified enzyme with a specific activity of 215 S-2266 chromozyme units/mg of protein was obtained from 10 ml of original plasma. 3. The purified material was homogeneous as ascertained by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had an apparent molecular weight of 31 000 as measured by gel filtration on Sephadex G-200. 4. It was confirmed immunologically that this enzyme was pancreatic kallikrein, which is distinct from plasma kallikrein, and that it could combine with α2-macroglobulin only in the presence of trypsin.


1980 ◽  
Vol 29 (3) ◽  
pp. 999-1006 ◽  
Author(s):  
M W Russell ◽  
E D Zanders ◽  
L A Bergmeier ◽  
T Lehner

An antigenic component (antigen I) of the cell surface of Streptococcus mutans has been purified from culture supernatants and shown to be immunologically identical to the protease-susceptible moiety of antigen I/II. Ion-exchange and gel filtration chromatography failed to yield a physicochemically homogeneous product. Immunoasbsorbent chromatography on single and tandem columns containing immobilized antibodies to antigens I/II and II yielded identical products which were homogeneous in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and which when injected into rabbits induced monospecific antisera to antigen I. This antigen consisted of approximately 70% protein. Its molecular weight was estimated as 150,000, and the isoelectric point was estimated to be 5.1. Immunofluorescence microscopy using monospecific antiserum to antigen I showed that a similar antigen was present on cells of S. mutans serotypes a, c, d, e, f, and g, but not b.


1999 ◽  
Vol 65 (2) ◽  
pp. 712-717 ◽  
Author(s):  
Atsuhisa Nishimura ◽  
Yasunori Ozaki ◽  
Hiroshi Oyama ◽  
Takashi Shin ◽  
Sawao Murao

ABSTRACT A novel type of 5-oxoprolinase was found in a cell extract of strain N-38A, which was later identified as Alcaligenes faecalis. The enzyme in the cell extract was purified to a homogeneous state with a yield of 16.6%. The molecular weight of the purified enzyme was estimated to be 47,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, suggesting that the enzyme is a monomeric protein. The enzyme specifically catalyzed a decyclization of l-pyroglutamate without hydrolyzing ATP and also without any requirements for metal ions such as Mg2+ and K+. The optimal pH for the decyclization was 7.4. The reaction was reversible. The equilibrium constant of the reaction, K eq = [l-glutamate]/[l-pyroglutamate], was evaluated to be approximately 0.035, which indicates that the reaction tends to form l-pyroglutamate. The amino-terminal amino acid sequence of the enzyme was H-Glu-Pro-Arg-Leu-Asp-Thr-Ser-Gln-Leu-Tyr-Ala-Asp-Val-His-Phe-. No protein with a similar sequence was found in the DNASIS database. Based on these data, it was strongly suggested that the enzyme described here is a novel type of 5-oxoprolinase.


Sign in / Sign up

Export Citation Format

Share Document