scholarly journals Equilibrium binding of coenzymes and substrates to nicotinamide-adenine dinucleotide phosphate-linked isocitrate dehydrogenase from bovine heart mitochondria

1978 ◽  
Vol 171 (3) ◽  
pp. 733-742 ◽  
Author(s):  
C H Reynolds ◽  
P W Kuchel ◽  
K Dalziel

1. The stoicheiometries and affinities of ligand binding to isocitrate dehydrogenase were studied at pH 7.0, mainly by measuring changes in NADPH and protein fluorescence. 2. The affinity of the enzyme for NADPH is about 100-fold greater than it is for NADP+ in various buffer/salt solutions, and the affinities for both coenzymes are decreased by Mg2+, phosphate and increase in ionic strength. 3. The maximum binding capacity of the dimeric enzyme for NADPH, from coenzyme fluorescence and protein-fluorescence measurements, and also for NADP+, by ultrafiltration, is 2 mol/mol of enzyme. Protein-fluorescence titrations of the enzyme with NADP+ are apparently inconsistent with this conclusion, indicating that the increase in protein fluorescence caused by NADP+ binding is not proportional to fractional saturation of the binding sites. 4. Changes in protein fluorescence caused by changes in ionic strength and by the binding of substrates, Mg2+ or NADP+ (but not NADPH) are relatively slow, suggesting conformation changes. 5. In the presence of Mg2+, the enzyme binds isocitrate very strongly, and 2-oxoglutarate rather weakly. 6. Evidence is presented for the formation of an abortive complex of enzyme-Mg2+-isocitrate-NADPH in which isocitrate and NADPH are bound much more weakly than in their complexes with enzyme and Mg2+ alone. 7. The results are discussed in relation to the interpretation of the kinetic properties of the enzyme and its behaviour in the mitochondrion.

2012 ◽  
Vol 550-553 ◽  
pp. 780-786 ◽  
Author(s):  
Xing Nong Zhou ◽  
Yao Yu ◽  
Song Liu ◽  
Shou Lei Yan ◽  
Qing Zhang Wang ◽  
...  

HA MIP was prepared in acetonitrile-ethylene glycol mixed solvent ( 20:1,v/v), HA was used as the template, methacrylic acid (MAA) as the functional monomer, azobisisobutyronitrile (AIBN) as the initiator and ethylene glycol dimethaerylate (EGDMA) as the cross-linker. The UV spectrophotometry was used to demonstrate the interaction between HA and MAA. The adsorption characteristics of MIP to HA have been studied by equilibrium binding experiment and Scatchard analysis. The data obtained show that MIP reached equilibrium within 6 h. It is found that within the studied concentration range one HA molecule is entrapped by two MAA molecules The Scatchard chart shows the apparent maximum binding capacity (Bmax) and the dissociation contents (KD) of MIP are 170.5 μmol/g and 0.18 mmol/L, respctively. The MIP synthesized by this method have better binding ability to histamine and can be applied on the separation and detection of histamine.


1970 ◽  
Vol 117 (1) ◽  
pp. 73-83 ◽  
Author(s):  
A. P. F. Flint ◽  
R. M. Denton

1. Superovulated rat ovary was found to contain high activities of NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase. The activity of each enzyme was approximately four times that of glucose 6-phosphate dehydrogenase and equalled or exceeded the activities reported to be present in other mammalian tissues. Fractionation of a whole tissue homogenate of superovulated rat ovary indicated that both enzymes were exclusively cytoplasmic. The tissue was also found to contain pyruvate carboxylase (exclusively mitochondrial), NAD–malate dehydrogenase and aspartate aminotransferase (both mitochondrial and cytoplasmic) and ATP–citrate lyase (exclusively cytoplasmic). 2. The kinetic properties of glucose 6-phosphate dehydrogenase, NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase were determined and compared with the whole-tissue concentrations of their substrates and NADPH; NADPH is a competitive inhibitor of all three enzymes. The concentrations of glucose 6-phosphate, malate and isocitrate in incubated tissue slices were raised at least tenfold by the addition of glucose to the incubation medium, from the values below to values above the respective Km values of the dehydrogenases. Glucose doubled the tissue concentration of NADPH. 3. Steroidogenesis from acetate is stimulated by glucose in slices of superovulated rat ovary incubated in vitro. It was found that this stimulatory effect of glucose can be mimicked by malate, isocitrate, lactate and pyruvate. 4. It is concluded that NADP–malate dehydrogenase or NADP–isocitrate dehydrogenase or both may play an important role in the formation of NADPH in the superovulated rat ovary. It is suggested that the stimulatory effect of glucose on steroidogenesis from acetate results from an increased rate of NADPH formation through one or both dehydrogenases, brought about by the increases in the concentrations of malate, isocitrate or both. Possible pathways involving the two enzymes are discussed.


2007 ◽  
Vol 293 (2) ◽  
pp. E523-E530 ◽  
Author(s):  
H. J. Green ◽  
T. A. Duhamel ◽  
G. P. Holloway ◽  
J. W. Moule ◽  
J. Ouyang ◽  
...  

This study investigated the effects of a 16-h protocol of heavy intermittent exercise on the intrinsic activity and protein and isoform content of skeletal muscle Na+-K+-ATPase. The protocol consisted of 6 min of exercise performed once per hour at ∼91% peak aerobic power (V̇o2 peak) with tissue sampling from vastus lateralis before (B) and immediately after repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Eleven untrained volunteers with a V̇o2 peak of 44.3 ± 2.3 ml·kg−1·min−1 participated in the study. Maximal Na+-K+-ATPase activity ( Vmax, in nmol·mg protein−1·h−1) as measured by the 3- O-methylfluorescein K+-stimulated phosphatase assay was reduced ( P < 0.05) by ∼15% with exercise regardless of the number of repetitions performed. In addition, Vmax at R9 and R16 was lower ( P < 0.05) than at R1 and R2. Vanadate-facilitated [3H]ouabain determination of Na+-K+-ATPase content (maximum binding capacity, pmol/g wet wt), although unaltered by exercise, increased ( P < 0.05) 8.3% by R9 with no further increase observed at R16. Assessment of relative changes in isoform abundance measured at B as determined by quantitative immunoblotting showed a 26% increase ( P < 0.05) in the α2-isoform by R2 and a 29% increase in α3 by R9. At R16, β3 was lower ( P < 0.05) than at R2 and R9. No changes were observed in α1, β1, or β2. It is concluded that repeated sessions of heavy exercise, although resulting in increases in the α2- and α3-isoforms and decreases in β3-isoform, also result in depression in maximal catalytic activity.


1993 ◽  
Vol 40 (3) ◽  
pp. 411-419 ◽  
Author(s):  
T Pawełczyk ◽  
M S Olson

The activity of the pyruvate dehydrogenase complex (PDC) purified from pig kidney medulla was affected by K+, Na+, Cl-, HCO3-, HPO4(2-) and changes in ionic strength. Increased ionic strength influenced the activity of PDC from medulla by decreasing the Vmax and S0.5 for pyruvate and increasing the Hill coefficient. The magnitude of these changes was smaller than the corresponding changes for PDC purified from the cortex. In the presence of K+ (80 mM), Na+ (20 mM), Cl- (20 mM), HCO3- (20 mM), HPO4(2-) (10 mM) and at ionic strength of 0.15 M the S0.5 for pyruvate of PDC from medulla was 117 microM and the enzyme complex was saturated by 1.1 mM pyruvate. Under these conditions the S0.5 for pyruvate of PDC derived from cortex was 159 microM and the enzyme was saturated at 4.5 mM pyruvate. Based on the results presented in this report it is suggested that PDC in kidney medulla may be regulated not only by a phosphorylation/dephosphorylation system and end-product inhibition but also via changes in ionic strength.


The rate-limiting step in recovery of acetylcholine sensitivity in smooth muscle after exposure to atropine or hyoscine could be the dissociation of drug-receptor complexes (dissociationlim ited model) or diffusion of drug away from the neighbourhood of the receptors (biophase model). These two models differ in the details of the predicted kinetics of development and decline of antagonism. Their theoretical kinetic properties have been worked out mathematically with the aid of an analogue computer, and com pared with experimental measurements made in guinea-pigileum longitudinal muscle preparations. The kinetic properties of antagonists applied singly could be explained either by the dissociation-limited model, or by the biophase model, provided that the size of the biophase bore a certain relation to the binding capacity of the receptors. In studies of the interaction of fastand slow-acting antagonists, it was found that the dissociation-limited model could alone account for the observed effects. It was concluded that the kinetics of action of hyoscine and atropine reflected their rate of reaction with receptors, an d that measurements of antagonist kinetics were a valid guide to drug-receptor rate constants. A consequence of the dissociation-limited model, that persistent antagonists should fail to show the classical parallel shift of log-dose effect curves when tested against agonists of low efficacy, was borne out experimentally, and this effect was used to estimate indirectly the equilibrium constants of alkyltrimethylammonium salts.


1985 ◽  
Vol 248 (1) ◽  
pp. E58-E63 ◽  
Author(s):  
D. K. Das ◽  
H. Steinberg

Mammalian lungs have been shown to store and to inactivate serotonin (5-HT) by an active process involving uptake and metabolism. 5-HT has direct action on lung including constrictor effects of pulmonary vascular and tracheobronchial smooth muscle, suggesting the presence of 5-HT receptors in lung. We have identified specific 5-HT binding of high affinity to the different lung portions and have shown that there was a different capacity for this binding. Two different 5-HT-binding capacities are present in a purified mitochondrial fraction. Saturation analysis of 5-[3H]HT binding to outer mitochondrial membranes demonstrates a single, temperature-sensitive, high-affinity and high-capacity binding (Kd = 8.3 +/- 1.2 nM, maximum binding capacity = 0.819 +/- 0.046 pmol/mg protein). The dissociation constant of inner mitochondrial membrane demonstrates a low-capacity site (Kd = 25.2 +/- 2.2 nM, maximum binding capacity = 0.453 +/- 0.037 pmol/mg protein). The purified microsomal fraction of lung exhibits a high-capacity binding site for 5-[3H]HT (Kd = 14.8 +/- 1.6 nM, maximum binding capacity = 0.760 +/- 0.03 pmol/mg protein). In addition to the lung being the major site for its inactivation, the presence of several specific 5-HT receptors may be related to some of the known 5-HT actions in lung and may suggest other unknown actions of this amine.


1989 ◽  
Vol 256 (6) ◽  
pp. G966-G974 ◽  
Author(s):  
H. D. Allescher ◽  
S. Ahmad ◽  
P. Kostka ◽  
C. Y. Kwan ◽  
E. E. Daniel

Distribution of the binding sites for [3H]diprenorphine, a non-selective opiate ligand, was studied in membrane fractions from longitudinal muscle/myenteric plexus and circular muscle containing deep muscular plexus. [3H]saxitoxin was used as a marker for neuronal plasma membranes and 5'-nucleotidase as a marker for smooth muscle plasma membranes. Saxitoxin binding correlated strongly with diprenorphine binding, but 5'-nucleotidase correlated poorly with diprenorphine or saxitoxin binding in these fractions. Opiate binding sites in membranes of myenteric and deep muscular plexus were of high affinity (Kd = 0.12 and 0.18 nM, respectively) with maximum binding capacity of 400 and 500 fmol/mg protein, respectively. Competition experiments using subtype-selective opiate ligands indicated that all three subtypes of opiate receptors were present in the same ratio of 40-45% mu-subtypes, 40-45% delta-subtypes, and 10-15% kappa-subtypes on both plexuses. Opiate receptors of canine small intestine, therefore, are located primarily or exclusively on nerves with similar distributions in nerve membranes containing only axonal varicosities (deep muscular plexus) as in those containing neurons, dendrites, and varicosities (myenteric plexus).


QRB Discovery ◽  
2020 ◽  
Vol 1 ◽  
Author(s):  
Ricardo Gaspar ◽  
Mikael Lund ◽  
Emma Sparr ◽  
Sara Linse

Abstractα-Synuclein (α-syn) is an intrinsically disordered protein with a highly asymmetric charge distribution, whose aggregation is linked to Parkinson’s disease. The effect of ionic strength was investigated at mildly acidic pH (5.5) in the presence of catalytic surfaces in the form of α-syn seeds or anionic lipid vesicles using thioflavin T fluorescence measurements. Similar trends were observed with both surfaces: increasing ionic strength reduced the rate of α-syn aggregation although the surfaces as well as α-syn have a net negative charge at pH 5.5. This anomalous salt dependence implies that short-range attractive electrostatic interactions are critical for secondary nucleation as well as heterogeneous primary nucleation. Such interactions were confirmed in Monte Carlo simulations of α-syn monomers interacting with surface-grafted C-terminal tails, and found to be weakened in the presence of salt. Thus, nucleation of α-syn aggregation depends critically on an attractive electrostatic component that is screened by salt to the extent that it outweighs the screening of the long-range repulsion between negatively charged monomers and negative surfaces. Interactions between the positively charged N-termini of α-syn monomers on the one hand, and the negatively C-termini of α-syn on fibrils or vesicles surfaces on the other hand, are thus critical for nucleation.


1994 ◽  
Vol 266 (6) ◽  
pp. R1810-R1815
Author(s):  
M. S. Mahmoud ◽  
P. Wang ◽  
S. R. Hootman ◽  
S. S. Reich ◽  
I. H. Chaudry

Although our studies indicate that P2-purinoceptor binding capacity decreases after hemorrhage and resuscitation, it is not known whether ATP-MgCl2 administration after hemorrhage has any beneficial effects on the receptor dynamics. To study this, we performed laparotomy (i.e., trauma induced) on rats and bled them to and maintained them at a mean arterial pressure of 40 mmHg until 40% of maximum bleedout volume was returned in the form of Ringer lactate (RL). The animals were then resuscitated with 3 times the volume of maximum bleedout with RL over 45 min followed by 2 times RL along with ATP-MgCl2 (50 mumol/kg body wt) over 95 min. Hepatocytes were isolated at 4, 17, and 27 h after resuscitation. P2-purinoceptor binding characteristics were determined by using [alpha-35S]ATP. Scatchard analysis revealed high-affinity and low-affinity receptor components in the hepatocytes isolated from sham-operated or hemorrhaged animals with or without ATP-MgCl2 infusion. ATP-MgCl2 ameliorated and subsequently restored the decreased maximum binding capacity (Bmax) of the high-affinity receptor component and significantly improved Bmax of the low-affinity receptor component. ATP-MgCl2 administration also produced a progressive enhancement in the affinity of the low-affinity receptor component. Thus the beneficial effects of ATP-MgCl2 observed after trauma-hemorrhage and resuscitation may be, in part, due to the restoration of P2-purinoceptor binding capacity and the enhancement of the receptor affinity.


2009 ◽  
Vol 88 (5) ◽  
pp. 477-482 ◽  
Author(s):  
Y.M. Li ◽  
Y. Zhang ◽  
L. Shi ◽  
B. Xiang ◽  
X. Cong ◽  
...  

Autotransplantation of the submandibular gland is effective for severe keratoconjunctivitis sicca. However, most transplants show decreased secretion shortly after the operation, which leads to obstruction of Wharton’s duct. The hypothesis that decreased catecholamine release due to denervation contributes to hypofunction in the early phase was tested in transplanted glands in rabbits. We found that salivary flow, expression of β1- and β2-adrenoceptor, and the maximum binding capacity were markedly decreased in the transplanted glands. Isoproterenol significantly reversed the decreased secretion, enhanced the expressions of β1- and β2-adrenoceptor, and ameliorated the atrophy of acinar cells. The contents of cAMP and phospho-ERK 1/2 were increased after isoproterenol treatment. These results indicate that lack of β-adrenoceptor stimulation is involved in early dysfunction of the transplanted gland. Isoproterenol treatment moderates structural injury and improves secretory function in the transplanted submandibular gland through up-regulating β1- and β2-adrenoceptor expression and post-receptor signal transduction.


Sign in / Sign up

Export Citation Format

Share Document