scholarly journals Protection of the pancreatic β-cell glucoreceptor mechanism for insulin secretion during culture in chemically defined medium

1978 ◽  
Vol 174 (3) ◽  
pp. 959-964 ◽  
Author(s):  
Erik Gylfe

High concentrations of glucose have a protective effect on the glucoreceptor mechanism for insulin secretion during culture of pancreatic islets in chemically defined media. To study at what level glucose exerts this effect, insulin secretion from β-cell-rich mouse pancreatic islets was measured before and after culture for 1 week in the presence of different substances. Before culture, glucose and inosine were potent stimulators, mannose and fructose were less potent and xylitol had no effect on secretion. Culture in 3mm-glucose resulted in a 10-fold decrease in the insulin response to glucose stimulation. A less marked decrease was noted after culture in 20mm- or 30mm-glucose. Inosine-stimulated secretion was much decreased after culture in high concentrations of glucose, whereas the responses to mannose or fructose were unchanged. After culture in 30mm-mannose, glucose-stimulated secretion was similar to that observed after culture in high concentrations of glucose, whereas the response to mannose had much decreased. There were no secretory responses to glucose or fructose after culture in 30mm-fructose, or to glucose or xylitol after culture in 30mm-xylitol. Culture in 10mm-inosine did not preserve any significant response to glucose or inosine. The insulin contents of islets and culture media were higher after culture in high concentrations of glucose, mannose or inosine than after culture in fructose, xylitol or low concentrations of glucose. It is suggested that glucose, and to some extent mannose, preserves the glucoreceptor mechanism for insulin secretion by influencing an early stage in glucose metabolism, presumably glucokinase activity.

2016 ◽  
Vol 473 (4) ◽  
pp. 487-496 ◽  
Author(s):  
Jonathan Barlow ◽  
Verena Hirschberg Jensen ◽  
Martin Jastroch ◽  
Charles Affourtit

Mitochondrial dysfunction associates with obesity-related pancreatic β-cell failure, but the causality of this association is unclear. In the present study, we show that palmitate-induced impairment of insulin secretion precedes mitochondrial respiratory defects in isolated mouse islets.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ashley M. Fields ◽  
Kevin Welle ◽  
Elaine S. Ho ◽  
Clementina Mesaros ◽  
Martha Susiarjo

AbstractIn pancreatic islets, catabolism of tryptophan into serotonin and serotonin receptor 2B (HTR2B) activation is crucial for β-cell proliferation and maternal glucose regulation during pregnancy. Factors that reduce serotonin synthesis and perturb HTR2B signaling are associated with decreased β-cell number, impaired insulin secretion, and gestational glucose intolerance in mice. Albeit the tryptophan-serotonin pathway is dependent on vitamin B6 bioavailability, how vitamin B6 deficiency impacts β-cell proliferation during pregnancy has not been investigated. In this study, we created a vitamin B6 deficient mouse model and investigated how gestational deficiency influences maternal glucose tolerance. Our studies show that gestational vitamin B6 deficiency decreases serotonin levels in maternal pancreatic islets and reduces β-cell proliferation in an HTR2B-dependent manner. These changes were associated with glucose intolerance and insulin resistance, however insulin secretion remained intact. Our findings suggest that vitamin B6 deficiency-induced gestational glucose intolerance involves additional mechanisms that are complex and insulin independent.


2011 ◽  
Vol 300 (5) ◽  
pp. E817-E823 ◽  
Author(s):  
Alice S. Green ◽  
Antoni R. Macko ◽  
Paul J. Rozance ◽  
Dustin T. Yates ◽  
Xiaochuan Chen ◽  
...  

GSIS is often measured in the sheep fetus by a square-wave hyperglycemic clamp, but maximal β-cell responsiveness and effects of fetal number and sex difference have not been fully evaluated. We determined the dose-response curve for GSIS in fetal sheep (0.9 of gestation) by increasing plasma glucose from euglycemia in a stepwise fashion. The glucose-insulin response was best fit by curvilinear third-order polynomial equations for singletons ( y = 0.018 x3 − 0.26 x2 + 1.2 x − 0.64) and twins ( y = −0.012 x3 + 0.043 x2 + 0.40 x − 0.16). In singles, maximal insulin secretion was achieved at 3.4 ± 0.2 mmol/l glucose but began to plateau after 2.4 ± 0.2 mmol/l glucose (90% of maximum), whereas the maximum for twins was reached at 4.8 ± 0.4 mmol/l glucose. In twin ( n = 18) and singleton ( n = 49) fetuses, GSIS was determined with a square-wave hyperglycemic clamp >2.4 mmol/l glucose. Twins had a lower basal glucose concentration, and plasma insulin concentrations were 59 ( P < 0.01) and 43% ( P < 0.05) lower in twins than singletons during the euglycemic and hyperglycemic periods, respectively. The basal glucose/insulin ratio was approximately doubled in twins vs. singles ( P < 0.001), indicating greater insulin sensitivity. In a separate cohort of fetuses, twins ( n = 8) had lower body weight ( P < 0.05) and β-cell mass ( P < 0.01) than singleton fetuses ( n = 7) as a result of smaller pancreata ( P < 0.01) and a positive correlation ( P < 0.05) between insulin immunopositive area and fetal weight ( P < 0.05). No effects of sex difference on GSIS or β-cell mass were observed. These findings indicate that insulin secretion is less responsive to physiological glucose concentrations in twins, due in part to less β-cell mass.


Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 444-452 ◽  
Author(s):  
Kyuho Kim ◽  
Chang-Myung Oh ◽  
Mica Ohara-Imaizumi ◽  
Sangkyu Park ◽  
Jun Namkung ◽  
...  

The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic β-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases β-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in β-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of β-cell-specific Htr2b−/− (Htr2b βKO), Htr3a−/− (Htr3a knock-out [KO]), and β-cell-specific tryptophan hydroxylase 1 (Tph1)−/− (Tph1 βKO) mice on a high-fat diet (HFD). Htr2b βKO, Htr3a KO, and Tph1 βKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 βKO mice developed glucose intolerance, but Htr2b βKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 βKO mice, and 5-HT treatment improved insulin secretion from Tph1 βKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in β-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state.


2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1441-1450 ◽  
Author(s):  
Isabel García-Tornadú ◽  
Ana M. Ornstein ◽  
Astrid Chamson-Reig ◽  
Michael B. Wheeler ◽  
David J. Hill ◽  
...  

The relationship between antidopaminergic drugs and glucose has not been extensively studied, even though chronic neuroleptic treatment causes hyperinsulinemia in normal subjects or is associated with diabetes in psychiatric patients. We sought to evaluate dopamine D2 receptor (D2R) participation in pancreatic function. Glucose homeostasis was studied in D2R knockout mice (Drd2−/−) mice and in isolated islets from wild-type and Drd2−/− mice, using different pharmacological tools. Pancreas immunohistochemistry was performed. Drd2−/− male mice exhibited an impairment of insulin response to glucose and high fasting glucose levels and were glucose intolerant. Glucose intolerance resulted from a blunted insulin secretory response, rather than insulin resistance, as shown by glucose-stimulated insulin secretion tests (GSIS) in vivo and in vitro and by a conserved insulin tolerance test in vivo. On the other hand, short-term treatment with cabergoline, a dopamine agonist, resulted in glucose intolerance and decreased insulin response to glucose in wild-type but not in Drd2−/− mice; this effect was partially prevented by haloperidol, a D2R antagonist. In vitro results indicated that GSIS was impaired in islets from Drd2−/− mice and that only in wild-type islets did dopamine inhibit GSIS, an effect that was blocked by a D2R but not a D1R antagonist. Finally, immunohistochemistry showed a diminished pancreatic β-cell mass in Drd2−/− mice and decreased β-cell replication in 2-month-old Drd2−/− mice. Pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops.


Sign in / Sign up

Export Citation Format

Share Document