scholarly journals The tricarboxylic acid cycle in Dictyostelium discoideum. Metabolite concentrations, oxygen uptake and 14c-labelled amino acid labelling patterns

1979 ◽  
Vol 184 (3) ◽  
pp. 581-588 ◽  
Author(s):  
P J Kelly ◽  
J K Kelleher ◽  
B E Wright

Some aspects of tricarboxylic acid-cycle activity during differentiation and aging in Dictyostelium discoideum were examined. The concentrations of glutamate, aspartate, alanine, citrate, 2-oxoglutarate, succinate, fumarate, malate, oxaloacetate, pyruvate and acetyl-CoA were determined at four stages over the course of differentiation. The rate of O2 utilization was also determined over differentiation. In addition, experiments are described in which the specific radioactivities of citrate, 2-oxoglutarate, succinate, fumarate and malate were determined during a 30 min labelling of cells from the preculmination stage of development with [14C]glutamate, [14C]aspartate or [14C]alanine. A similar experiment was also performed with cells from the aggregation stage of development using [14C]glutamate.

1996 ◽  
Vol 271 (4) ◽  
pp. E788-E799 ◽  
Author(s):  
F. M. Jeffrey ◽  
C. J. Storey ◽  
A. D. Sherry ◽  
C. R. Malloy

A previous model using 13C nuclear magnetic resonance isotopomer analysis provided for direct measurement of the oxidation of 13C-enriched substrates in the tricarboxylic acid cycle and/or their entry via anaplerotic pathways. This model did not allow for recycling of labeled metabolites from tricarboxylic acid cycle intermediates into the acetyl-CoA pool. An extension of this model is now presented that incorporates carbon flow from oxaloacetate or malate to acetyl-CoA. This model was examined using propionate metabolism in the heart, in which previous observations indicated that all of the propionate consumed was oxidized to CO2 and water. Application of the new isotopomer model shows that 2 mM [3-13C]propionate entered the tricarboxylic acid cycle as succinyl-CoA (an anaplerotic pathway) at a rate equal to 52% of tricarboxylic acid cycle turnover and that all of this carbon entered the acetyl-CoA pool and was oxidized. This was verified using standard biochemical analysis; from the rate (mumol.min-1.g dry wt-1) of propionate uptake (4.0 +/- 0.7), the estimated oxygen consumption (24.8 +/- 5) matched that experimentally determined (24.4 +/- 3).


2002 ◽  
Vol 76 (1) ◽  
pp. 31-36 ◽  
Author(s):  
C. Kepron ◽  
M. Novak ◽  
B.J. Blackburn

AbstractCarbon-13 nuclear magnetic resonance (NMR) spectroscopy was employed to investigate alterations in hepatic carbohydrate metabolism inMeriones unguiculatusinfected withEchinococcus multilocularis. Following portal vein injections of an equimolar mixture of ]#x005B;1,2-13C2]acetate and [3-13C]lactate, perchloric acid extracts of the livers were prepared and NMR spectra obtained. Isotopomer analysis using glutamate resonances in these spectra showed that the relative contributions of endogenous and exogenous substrates to the acetyl-CoA entering the tricarboxylic acid cycle differed significantly between infected and control groups. The mole fraction of acetyl-CoA that was derived from endogenous, unlabelled sources (FU) was 0.50±0.10 in controls compared to 0.34±0.04 in infected animals. However, the fraction of acetyl-CoA derived from [3-13C]lactate (FLL) was larger in livers of infected animals than those from controls with values of 0.27±0.04 and 0.18±0.04, respectively. Similarly, the fraction of acetyl-CoA derived from [1,2-13C2]acetate (FLA) was larger in livers of infected animals compared to those in controls; the fractions were 0.38±0.01 and 0.32±0.07, respectively. The ratio of FLA:FLLwas significantly smaller in the infected group with a value of 1.42±0.18 compared to 1.74±0.09 for the controls. These results indicate that alveolar hydatid disease has a pronounced effect on the partitioning of substrates within the pathways of carbohydrate metabolism in the host liver.


1986 ◽  
Vol 234 (3) ◽  
pp. 605-610 ◽  
Author(s):  
L Facci ◽  
S D Skaper ◽  
S Varon

Cultures of central-nervous-system neurons at low densities require for their survival exogenous pyruvate, alpha-oxoglutarate or oxaloacetate, even in the presence of high glucose concentrations. Most other alpha-oxo acids support cell survival only in the presence of alpha-amino acids which transaminate to alpha-oxoglutarate, oxaloacetate or pyruvate. The alpha-oxo acids therefore operate as acceptors of amino groups from appropriate donors to generate tricarboxylic acid-cycle-relevant substrates, and these alpha-oxo acids provide for neuronal support only insofar as they make it possible for exogenously supplied alpha-amino acid precursors to generate intracellularly one of the three critical metabolites. To examine more closely the relationship between transamination activity and neuronal survival, we measured 14CO2 production from [14C]glutamate in the presence of appropriate alpha-oxo acid partners by using 8-day-embryonic chick forebrain, dorsal-root-ganglion and ciliary-ganglion neurons. Neuronal survival was measured concurrently in monolayer neuronal cultures maintained with the corresponding amino acid/oxo acid pairs. Forebrain and ganglionic cell suspensions both produced 14CO2 from [14C]glutamate, which accurately correlated with 24 h neuronal survival. Concentrations of glutamate or alpha-oxo acid which provide for maximal neuronal survival also produced maximal amounts of 14CO2. The same ability to generate CO2 from glutamate (in the presence of the appropriate alpha-oxo acids) can ensure neuronal survival in 24 h cultures and therefore must meet energy or other metabolic needs of those neurons which glucose itself is unable to satisfy.


1994 ◽  
Vol 266 (6) ◽  
pp. E1012-E1022 ◽  
Author(s):  
J. A. Vogt ◽  
A. J. Fischman ◽  
M. Kempf ◽  
Y. M. Yu ◽  
R. G. Tompkins ◽  
...  

A generalized steady-state model was developed for determining tricarboxylic acid cycle fractional fluxes from 13C nuclear magnetic resonance (NMR) data. The model relates the measured mole fractions of [13C]glutamate isotopomers to the fractional fluxes and predicted mole fractions of isotopomers of oxaloacetate (OAA) and acetyl-CoA. This model includes cycling between OAA and fumarate. Fractional fluxes are determined by fitting the model equations to NMR parameters by use of nonlinear least squares. Although only fractional fluxes can be determined from 13C-NMR data, when they are combined with mass spectroscopic measurements, absolute values can be derived. A specific metabolic system represented by published 13C-NMR data from extracts of hearts perfused with [13C]acetate, [13C]pyruvate (PYR), and [13C]acetate plus [13C]PYR was used to test the model. The intensities of predicted 13C-NMR splitting patterns were compared with observed values, and there was excellent agreement between observed and predicted signal intensities. With this model, important physiological parameters, including the OAA-derived fraction of inflow to PYR, PYR-derived fraction of inflow to acetyl-CoA, citrate-derived fraction of inflow to OAA, and PYR-derived fraction of inflow to OAA, can be determined.


Biochemistry ◽  
1993 ◽  
Vol 32 (45) ◽  
pp. 12240-12244 ◽  
Author(s):  
John G. Jones ◽  
A. Dean Sherry ◽  
F. Mark H. Jeffrey ◽  
Charles J. Storey ◽  
Craig R. Malloy

1975 ◽  
Vol 150 (3) ◽  
pp. 357-372 ◽  
Author(s):  
F D Sauer ◽  
J D Erfle ◽  
S Mahadevan

Mixed rumen micro-organisms, maintained in continuous culture readily incorporated labelled HCO3- and acetate into amino acids. Labelled propionate, in contrast, was utilized only for isoleucine biosynthesis, but failed to label other amino acids to any significant extent. Evidence was obtained showing that in these mixed, i.e. symbiotic, cultures foward tricarboxylic acid-cycle reactions only proceed to 2-oxoglutarate. 14C distribution in amino acids clearly shows that 2-oxoglutarate is not oxidized further by tricarboxylic acid-cycle enzymes. Instead, acetate is carboxylated to pyruvate which is then carboxylated to oxaloacetate. Oxaloacetate equilibrates with fumarate and thereby carbon atoms 1 and 4 as well as carbon atoms 2 and 3 are randomized. Evidence was also obtained for the carboxylation of propionate to 2-oxobutyrate, isovalerate to 4-methyl-2-oxopentanoate, phenylacetate and hydroxyphentlacetate to the corresponding phenyl- and hydroxyphenyl-pyruvic acids and succinate to 2-oxoglutarate. Of the amino acid precursors investigated, only 3-hydroxypyruvate, the precursor of serine, appeared to be synthesized via an oxidative step, i.e. 3-phosphoglyceric acid to 3-phosphohydroxypyruvic acid. Most 2-oxo precursors of amino acids in these organisms appear to be formed via reductive carboxylation of the precursor acid.


1985 ◽  
Vol 116 (1) ◽  
pp. 69-78
Author(s):  
P. PARENTI ◽  
B. GIORDANA ◽  
V. F. SACCHI ◽  
G. M. HANOZET ◽  
A. GUERRITORE

The transepithelial electrical potential difference across the isolated midgut of Bombyx mori larvae is dependent on the presence of potassium and is unaffected by the addition of hexoses to perfusion media, whereas it is enhanced by alanine, aspartic acid, glutamic acid and the corresponding 2- oxoacids, glutamine and malate. The midgut enzyme profile indicates that the substrates for the tricarboxylic acid cycle are supplied mainly by amino acid metabolism via transaminases. Accordingly, aminoxyacetate drastically reduces the intestinal transepithelial electrical potential difference stimulated by amino acids. Measurement of the free amino acid concentration in the lumen content, intestinal cells and haemolymph shows that glutamic acid, asparagine and glutamine are accumulated in the cell, whilst the haemolymph is enriched with basic amino acids and with glycine, alanine, serine and tyrosine, the major components of the silk fibroin. Therefore, amino acid metabolism directly related to the tricarboxylic acid cycle seems to be the primary source of energy for the potassium pump activity in B. mori midgut.


1977 ◽  
Vol 164 (2) ◽  
pp. 349-355 ◽  
Author(s):  
G Read ◽  
B Crabtree ◽  
G H Smith

1. The activities of 2-oxoglutarate dehydrogenase (EC 1.2.4.2) were measured in hearts and mammary glands of rats, mice, rabbits, guinea pigs, cows, sheep, goats and in the flight muscles of several Hymenoptera. 2. The activity of 2-oxoglutarate dehydrogenase was similar to the maximum flux through the tricarboxylic acid cycle in vivo. Therefore measuring the activity of this enzyme may provide a simple method for estimating the maximum flux through the cycle for comparative investigations. 3. The activities of pyruvate dehydrogenase (EC 1.2.4.1) in mammalian hearts were similar to those of 2-oxoglutarate dehydrogenase, suggesting that in these tissues the tricarboxylic acid cycle can be supplied (under some conditions) by acetyl-CoA derived from pyruvate alone. 4. In the lactating mammary glands of the rat and mouse, the activities of pyruvate dehydrogenase exceeded those of 2-oxoglutarate dehydrogenase, reflecting a flux of pyruvate to acetyl-CoA for fatty acid synthesis in addition to that of oxidation via the tricarboxylic acid cycle. In ruminant mammary glands the activities of pyruvate dehydrogenase were similar to those of 2-oxoglutarate dehydrogenase, reflecting the absence of a significant flux of pyruvate to fatty acids in these tissues.


Sign in / Sign up

Export Citation Format

Share Document