scholarly journals The elongation of exogenous fatty acids and the control of phospholipid acyl chain length in Micrococcus cryophilus

1980 ◽  
Vol 188 (3) ◽  
pp. 585-592 ◽  
Author(s):  
S P Sandercock ◽  
N J Russell

The synthesis of fatty acids de novo from acetate and the elongation of exogenous satuated fatty acids (C12-C18) by the psychrophilic bacterium Micrococcus cryophilus (A.T.C.C. 15174) grown at 1 or 20 degrees C was investigated. M. cryophilus normally contains only C16 and C18 acyl chains in its phospholipids, and the C18/C16 ratio is altered by changes in growth temperature. The bacterium was shown to regulate strictly its phospholipid acyl chain length and to be capable of directly elongating myristate and palmitate, and possibly laurate, to a mixture of C16 and C18 acyl chains. Retroconversion of stearate into palmitate also occurred. Fatty acid elongation could be distinguished from fatty acid synthesis de novo by the greater sensitivity of fatty acid elongation to inhibition by NaAsO2 under conditions when the supply of ATP and reduced nicotinamide nucleotides was not limiting. It is suggested that phospholipid acyl chain length may be controlled by a membrane-bound elongase enzyme, which interconverts C16 and C18 fatty acids via a C14 intermediate; the activity of the enzyme could be regulated by membrane lipid fluidity.

2020 ◽  
Vol 61 (10) ◽  
pp. 1341-1346
Author(s):  
Iris D. Zelnik ◽  
Giora Volpert ◽  
Leena E. Viiri ◽  
Dimple Kauhanen ◽  
Tamar Arazi ◽  
...  

The backbone of all sphingolipids (SLs) is a sphingoid long-chain base (LCB) to which a fatty acid is N-acylated. Considerable variability exists in the chain length and degree of saturation of both of these hydrophobic chains, and recent work has implicated ceramides with different LCBs and N-acyl chains in distinct biological processes; moreover, they may play different roles in disease states and possibly even act as prognostic markers. We now demonstrate that the half-life, or turnover rate, of ceramides containing diverse N-acyl chains is different. By means of a pulse-labeling protocol using stable-isotope, deuterated free fatty acids, and following their incorporation into ceramide and downstream SLs, we show that very-long-chain (VLC) ceramides containing C24:0 or C24:1 fatty acids turn over much more rapidly than long-chain (LC) ceramides containing C16:0 or C18:0 fatty acids due to the more rapid metabolism of the former into VLC sphingomyelin and VLC hexosylceramide. In contrast, d16:1 and d18:1 ceramides show similar rates of turnover, indicating that the length of the sphingoid LCB does not influence the flux of ceramides through the biosynthetic pathway. Together, these data demonstrate that the N-acyl chain length of SLs may not only affect membrane biophysical properties but also influence the rate of metabolism of SLs so as to regulate their levels and perhaps their biological functions.


2015 ◽  
Vol 8s1 ◽  
pp. LPI.S31780 ◽  
Author(s):  
Mike F. Renne ◽  
Xue Bao ◽  
Cedric H. De Smet ◽  
Anton I. P. M. De Kroon

Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.


1991 ◽  
Vol 2 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M J Krabak ◽  
S W Hui

Phosphatidates (PA or phosphatidic acid) were shown to have mitogenic properties, including the stimulation of DNA synthesis and calcium mobilization in C3H/10T1/2 cells. Their continuous presence for a minimum of 7 h induced DNA synthesis with kinetics similar to that observed when 10% fetal bovine serum was used as a mitogen. PAs with long chain saturated fatty acid moieties were more mitogenic, in a dose-dependent fashion, than PAs with short saturated or unsaturated fatty acid moieties. When compared with lysostearoyl-PA (LSPA), distearoyl-PA (DSPA) was as potent with respect to the induction of DNA synthesis. Lysooleoyl-PA (LOPA) was slightly more potent than dioleoyl-PA (DOPA), but much weaker than DSPA and LSPA. Preincubation with dilauroyl-PA (DLPA) reduces the mitogenic effect of DSPA by 85%. The pattern of mitogenic inhibition suggests that a chain-length-independent, yet PA-specific, mechanism is involved. Both DSPA and DLPA are equally taken up by the cells after 30 min. LOPA, but not LSPA, produced a large calcium transient (1.3 microM), which we found to be derived from intracellular sources. DSPA, the most mitogenic PA tested, produced a weaker transient (0.6 microM). Interestingly, LSPA did not produce any detectable calcium transient. These results suggest that the chain-length-specific step in the signaling mechanism of PA occurs after the initial chain-length-independent partitioning and/or binding to the membrane and that the induction of DNA synthesis is not related to the observed calcium transients.


2015 ◽  
Vol 396 (6-7) ◽  
pp. 693-705 ◽  
Author(s):  
Woo-Jae Park ◽  
Joo-Won Park

Abstract Sphingolipids have emerged as an important lipid mediator in intracellular signalling and metabolism. Ceramide, which is central to sphingolipid metabolism, is generated either via a de novo pathway, by attaching fatty acyl CoA to a long-chain base, or via a salvage pathway, by degrading pre-existing sphingolipids. As a ‘sphingolipid rheostat’ has been proposed, the balance between ceramide and sphingosine-1-phosphate has been the object of considerable attention. Ceramide has recently been reported to have a different function depending on its acyl chain length: six ceramide synthases (CerS) determine the specific ceramide acyl chain length in mammals. All CerS-deficient mice generated to date show that sphingolipids with defined acyl chain lengths play distinct pathophysiological roles in disease models. This review describes recent advances in understanding the associations of CerS with various diseases and includes clinical case reports.


1985 ◽  
Vol 63 (9) ◽  
pp. 919-926 ◽  
Author(s):  
H. W. Cook ◽  
M. W. Spence

Neuroblastoma cells rapidly incorporate exogenous fatty acids into cellular triacylglycerol and relationships between triacylglycerol and phospholipid biosynthesis have been indicated by the relative time course of labeling of these lipids. To evaluate this further, neuroblastoma cells were labeled using potential precursors of phospholipid including radiolabeled triacyglycerol, glycerol, glucose, and fatty acid. With [2-3H]glycerol or a mixture of [2-3H]glycerol trioleate and glycerol tri[1-14C]oleate, phospholipids were labeled at very low levels (< 0.1 and < 0.5%, respectively). With [6-3H]glucose, labeling of lipids (0.5–3.5%) was greatest in medium containing 19 mM fructose, whereas labeling with [1-14C]18:2(n-6) was similar in media containing either 19 mM fructose or 25 mM glucose. Labeling of the glycerol moiety of triacylglycerol with [6-3H]glucose increased with 40–200 μM 18:2(n-6) present and occurred predominantly in 2 h. Some [6-3H]glucose label was in fatty acyl chains (chiefly 16:0) of triacylglycerol by 16 h, but was unaffected by exogenous 18:2(n-6). Triacylglycerol was the only lipid to increase in mass (threefold with 200 μM 18:2(n-6)). During the chase of cells pulsed with [6-3H]glucose, label in triacylglycerol declined within 0.5 h, whereas in phospholipid it increased transiently up to 2 h and then declined. Changes were inversely proportional to 18:2(n-6) levels in the chase medium and labeled acyl chains moved in parallel with the glycerol moiety. Thus, a major portion of acyl chain transfer from triacylglycerol was accompanied by glycerol. Triacylglycerol appears to serve as an expandable intracellular reservoir during an influx of acyl chains and subsequent incorporation of those acyl chains into phospholipid seems to involve some de novo phospholipid synthesis. As phospholipid mass does not change appreciably, such synthesis must be accompanied by equally rapid catabolism and turnover of membrane phospholipid.


Author(s):  
Takeo Nakano ◽  
Gota Kikugawa ◽  
Taku Ohara

Nonequilibrium molecular dynamics simulations are carried out on single component lipid bilayers with ambient water in order to investigate the effect of acyl chain length on heat transport characteristics along and across the membranes. In this study, dipalmitoyl-phosphatidyl-choline (DPPC), dilauroyl-phosphatidyl-choline (DLPC), and stearoyl-myristoyl-phosphatidyl-choline (SMPC) which has two acyl chains of both sixteen C atoms, both twelve C atoms, and eighteen and fourteen C atoms, respectively, were used as lipid molecules. In the direction along the membranes, thermal conductivity corresponds with that of each membrane. On the other hand, in the direction across membrane, the highest thermal resistance exists at the center of lipid bilayer where lipid acyl chains face each other. However, asymmetric chain length reduces thermal resistance at the interface between lipid monolayers. Therefore, thermal conductivity across the membrane which consists of asymmetric chain length is higher than those which consist of symmetric chain length.


Sign in / Sign up

Export Citation Format

Share Document