Triacylglycerol as a precursor in phospholipid biosynthesis in cultured neuroblastoma cells: studies with labeled glucose, fatty acid, and triacylglycerol

1985 ◽  
Vol 63 (9) ◽  
pp. 919-926 ◽  
Author(s):  
H. W. Cook ◽  
M. W. Spence

Neuroblastoma cells rapidly incorporate exogenous fatty acids into cellular triacylglycerol and relationships between triacylglycerol and phospholipid biosynthesis have been indicated by the relative time course of labeling of these lipids. To evaluate this further, neuroblastoma cells were labeled using potential precursors of phospholipid including radiolabeled triacyglycerol, glycerol, glucose, and fatty acid. With [2-3H]glycerol or a mixture of [2-3H]glycerol trioleate and glycerol tri[1-14C]oleate, phospholipids were labeled at very low levels (< 0.1 and < 0.5%, respectively). With [6-3H]glucose, labeling of lipids (0.5–3.5%) was greatest in medium containing 19 mM fructose, whereas labeling with [1-14C]18:2(n-6) was similar in media containing either 19 mM fructose or 25 mM glucose. Labeling of the glycerol moiety of triacylglycerol with [6-3H]glucose increased with 40–200 μM 18:2(n-6) present and occurred predominantly in 2 h. Some [6-3H]glucose label was in fatty acyl chains (chiefly 16:0) of triacylglycerol by 16 h, but was unaffected by exogenous 18:2(n-6). Triacylglycerol was the only lipid to increase in mass (threefold with 200 μM 18:2(n-6)). During the chase of cells pulsed with [6-3H]glucose, label in triacylglycerol declined within 0.5 h, whereas in phospholipid it increased transiently up to 2 h and then declined. Changes were inversely proportional to 18:2(n-6) levels in the chase medium and labeled acyl chains moved in parallel with the glycerol moiety. Thus, a major portion of acyl chain transfer from triacylglycerol was accompanied by glycerol. Triacylglycerol appears to serve as an expandable intracellular reservoir during an influx of acyl chains and subsequent incorporation of those acyl chains into phospholipid seems to involve some de novo phospholipid synthesis. As phospholipid mass does not change appreciably, such synthesis must be accompanied by equally rapid catabolism and turnover of membrane phospholipid.

2019 ◽  
Vol 81 (1) ◽  
pp. 165-188 ◽  
Author(s):  
Bo Wang ◽  
Peter Tontonoz

Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands’ cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.


1980 ◽  
Vol 188 (3) ◽  
pp. 585-592 ◽  
Author(s):  
S P Sandercock ◽  
N J Russell

The synthesis of fatty acids de novo from acetate and the elongation of exogenous satuated fatty acids (C12-C18) by the psychrophilic bacterium Micrococcus cryophilus (A.T.C.C. 15174) grown at 1 or 20 degrees C was investigated. M. cryophilus normally contains only C16 and C18 acyl chains in its phospholipids, and the C18/C16 ratio is altered by changes in growth temperature. The bacterium was shown to regulate strictly its phospholipid acyl chain length and to be capable of directly elongating myristate and palmitate, and possibly laurate, to a mixture of C16 and C18 acyl chains. Retroconversion of stearate into palmitate also occurred. Fatty acid elongation could be distinguished from fatty acid synthesis de novo by the greater sensitivity of fatty acid elongation to inhibition by NaAsO2 under conditions when the supply of ATP and reduced nicotinamide nucleotides was not limiting. It is suggested that phospholipid acyl chain length may be controlled by a membrane-bound elongase enzyme, which interconverts C16 and C18 fatty acids via a C14 intermediate; the activity of the enzyme could be regulated by membrane lipid fluidity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Di Carlo ◽  
Bebiana C. Sousa ◽  
Marcello Manfredi ◽  
Jessica Brandi ◽  
Elisa Dalla Pozza ◽  
...  

AbstractPancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC.


2015 ◽  
Vol 8s1 ◽  
pp. LPI.S31780 ◽  
Author(s):  
Mike F. Renne ◽  
Xue Bao ◽  
Cedric H. De Smet ◽  
Anton I. P. M. De Kroon

Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.


2020 ◽  
Vol 295 (28) ◽  
pp. 9268-9280 ◽  
Author(s):  
Adriana Osickova ◽  
Humaira Khaliq ◽  
Jiri Masin ◽  
David Jurnecka ◽  
Anna Sukova ◽  
...  

In a wide range of organisms, from bacteria to humans, numerous proteins have to be posttranslationally acylated to become biologically active. Bacterial repeats in toxin (RTX) cytolysins form a prominent group of proteins that are synthesized as inactive protoxins and undergo posttranslational acylation on ε-amino groups of two internal conserved lysine residues by co-expressed toxin-activating acyltransferases. Here, we investigated how the chemical nature, position, and number of bound acyl chains govern the activities of Bordetella pertussis adenylate cyclase toxin (CyaA), Escherichia coli α-hemolysin (HlyA), and Kingella kingae cytotoxin (RtxA). We found that the three protoxins are acylated in the same E. coli cell background by each of the CyaC, HlyC, and RtxC acyltransferases. We also noted that the acyltransferase selects from the bacterial pool of acyl–acyl carrier proteins (ACPs) an acyl chain of a specific length for covalent linkage to the protoxin. The acyltransferase also selects whether both or only one of two conserved lysine residues of the protoxin will be posttranslationally acylated. Functional assays revealed that RtxA has to be modified by 14-carbon fatty acyl chains to be biologically active, that HlyA remains active also when modified by 16-carbon acyl chains, and that CyaA is activated exclusively by 16-carbon acyl chains. These results suggest that the RTX toxin molecules are structurally adapted to the length of the acyl chains used for modification of their acylated lysine residue in the second, more conserved acylation site.


2010 ◽  
Vol 21 (18) ◽  
pp. 3114-3124 ◽  
Author(s):  
Rieko Imae ◽  
Takao Inoue ◽  
Masako Kimura ◽  
Takahiro Kanamori ◽  
Naoko H. Tomioka ◽  
...  

Phosphatidylinositol (PI), an important constituent of membranes, contains stearic acid as the major fatty acid at the sn-1 position. This fatty acid is thought to be incorporated into PI through fatty acid remodeling by sequential deacylation and reacylation. However, the genes responsible for the reaction are unknown, and consequently, the physiological significance of the sn-1 fatty acid remains to be elucidated. Here, we identified acl-8, -9, and -10, which are closely related to each other, and ipla-1 as strong candidates for genes involved in fatty acid remodeling at the sn-1 position of PI. In both ipla-1 mutants and acl-8 acl-9 acl-10 triple mutants of Caenorhabditis elegans, the stearic acid content of PI is reduced, and asymmetric division of stem cell-like epithelial cells is defective. The defects in asymmetric division of these mutants are suppressed by a mutation of the same genes involved in intracellular retrograde transport, suggesting that ipla-1 and acl genes act in the same pathway. IPLA-1 and ACL-10 have phospholipase A1 and acyltransferase activity, respectively, both of which recognize the sn-1 position of PI as their substrate. We propose that the sn-1 fatty acid of PI is determined by ipla-1 and acl-8, -9, -10 and crucial for asymmetric divisions.


2015 ◽  
Vol 396 (6-7) ◽  
pp. 693-705 ◽  
Author(s):  
Woo-Jae Park ◽  
Joo-Won Park

Abstract Sphingolipids have emerged as an important lipid mediator in intracellular signalling and metabolism. Ceramide, which is central to sphingolipid metabolism, is generated either via a de novo pathway, by attaching fatty acyl CoA to a long-chain base, or via a salvage pathway, by degrading pre-existing sphingolipids. As a ‘sphingolipid rheostat’ has been proposed, the balance between ceramide and sphingosine-1-phosphate has been the object of considerable attention. Ceramide has recently been reported to have a different function depending on its acyl chain length: six ceramide synthases (CerS) determine the specific ceramide acyl chain length in mammals. All CerS-deficient mice generated to date show that sphingolipids with defined acyl chain lengths play distinct pathophysiological roles in disease models. This review describes recent advances in understanding the associations of CerS with various diseases and includes clinical case reports.


Sign in / Sign up

Export Citation Format

Share Document