scholarly journals Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase

2004 ◽  
Vol 378 (2) ◽  
pp. 633-640 ◽  
Author(s):  
Martin ŠIMKOVIČ ◽  
Frank E. FRERMAN

Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron–sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis–Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer.


2002 ◽  
Vol 364 (3) ◽  
pp. 659-667 ◽  
Author(s):  
Martin ŠIMKOVIČ ◽  
Gregory D. DEGALA ◽  
Sandra S. EATON ◽  
Frank E. FRERMAN

Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is an iron—sulphur flavoprotein and a component of an electron-transfer system that links 10 different mitochondrial flavoprotein dehydrogenases to the mitochondrial bc1 complex via electron transfer flavoprotein (ETF) and ubiquinone. ETF-QO is an integral membrane protein, and the primary sequences of human and porcine ETF-QO were deduced from the sequences of the cloned cDNAs. We have expressed human ETF-QO in Sf9 insect cells using a baculovirus vector. The cDNA encoding the entire protein, including the mitochondrial targeting sequence, was present in the vector. We isolated a membrane-bound form of the enzyme that has a molecular mass identical with that of the mature porcine protein as determined by SDS/PAGE and has an N-terminal sequence that is identical with that predicted for the mature holoenzyme. These data suggest that the heterologously expressed ETF-QO is targeted to mitochondria and processed to the mature, catalytically active form. The detergent-solubilized protein was purified by ion-exchange and hydroxyapatite chromatography. Absorption and EPR spectroscopy and redox titrations are consistent with the presence of flavin and iron—sulphur centres that are very similar to those in the equivalent porcine and bovine proteins. Additionally, the redox potentials of the two prosthetic groups appear similar to those of the other eukaryotic ETF-QO proteins. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues, a ubiquinone analogue, and with human wild-type ETF and a Paracoccus—human chimaeric ETF as varied substrates. The results demonstrate that this expression system provides sufficient amounts of human ETF-QO to enable crystallization and mechanistic investigations of the iron—sulphur flavoprotein.



2020 ◽  
Author(s):  
Brett Bennetts ◽  
Craig J. Morton ◽  
Michael W. Parker

AbstractThe ubiquitous CLC protein superfamily consists of channels, that permit passive diffusion of Cl ions across biological membranes, and pumps, that can actively transport Cl ions against their electrochemical gradient; yet, puzzlingly, both types share a strongly conserved Cl ion transport pathway comprised of three consecutive binding sites. This raises the question; how does the same pathway support passive diffusion in CLC channels and active transport in CLC pumps? Based on high-resolution structural data current theories suggest that subtle structural differences in the conserved pathway allow CLC channels to ‘leak’ Cl ions. A recent cryo-electron microscopy structure of the human ClC-1 channel does not show occupancy of the central Cl ion binding site but reveals a wide intracellular vestibule that bifurcates from the conserved pathway in this region. Here we show that replacing residues that line the ClC-1 intracellular vestibule with the corresponding residues of CLC pumps resulted in interactions between permeating anions at neighbouring binding sites and altered anion selectivity. Removing the side chain of a strictly conserved tyrosine residue, that coordinates Cl ion at the central binding site of CLC pumps, removed multi-ion behaviour in ClC-1 mutants. In contrast, removing the side chain of a highly conserved glutamate residue that transiently occupies Cl ion binding sites, as part of the transport mechanism of CLC pumps and the mechanism that opens and closes CLC channels, only partially removed multi-ion behaviour in ClC-1 mutants. Our findings show that structural differences between CLC channels and pumps, outside of the conserved Cl ion transport pathway, fundamentally affect anion permeation in ClC-1 channels.SummarySome CLC proteins are passive Cl- channels while others are active Cl- pumps but, paradoxically, both share a conserved, canonical, Cl- permeation pathway. Here Bennetts, Morton and Parker show that ‘pump-like’ mutations in a poorly conserved region, located remotely from the canonical pathway, affect anion permeation in human ClC-1 channels.





2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.



2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sohyeon Seo ◽  
Jinju Lee ◽  
Jungsue Choi ◽  
G. Hwan Park ◽  
Yeseul Hong ◽  
...  

AbstractAssembled amyloid beta (Aβ) peptides have been considered pathological assemblies involved in human brain diseases, and the electron transfer or electron transport characteristics of Aβ are important for the formation of structured assemblies. Here, we report the electrical characteristics of surface-assembled Aβ peptides similar to those observed in Alzheimer’s patients. These characteristics correlate to their electron transfer characteristics. Electrical current–voltage plots of Aβ vertical junction devices show the Aβ sequence dependence of the current densities at both Aβ monomers (mono-Aβs) and Aβ oligomers (oli-Aβs), while Aβ sequence dependence is not clearly observed in the electrical characteristics of Aβ planar field effect transistors (FETs). In particular, surface oligomerization of Aβ peptides drastically decreases the activity of electron transfer, which presents a change in the electron transport pathway in the Aβ vertical junctions. Electron transport at oli-Aβ junctions is symmetric (tunneling/tunneling) due to the weak and voltage-independent coupling of the less redox-reactive oli-Aβ to the contacts, while that at mono-Aβ junctions is asymmetric (hopping/tunneling) due to redox levels of mono-Aβ voltage-dependently coupled with contact electrodes. Consequently, through vertical junctions, the sequence- and conformation-dependent electrical characteristics of Aβs can reveal their electron transfer activities.



2021 ◽  
Vol 7 (8) ◽  
pp. 110
Author(s):  
Songjie Yang ◽  
Matteo Zecchini ◽  
Andrew Brooks ◽  
Sara Krivickas ◽  
Desiree Dalligos ◽  
...  

The syntheses of new BEDT-TTF derivatives are described. These comprise BEDT-TTF with one ethynyl group (HC≡C-), with two (n-heptyl) or four (n-butyl) alkyl side chains, with two trans acetal (-CH(OMe)2) groups, with two trans aminomethyl (-CH2NH2) groups, and with an iminodiacetate (-CH2N(CH2CO2−)2 side chain. Three transition metal salts have been prepared from the latter donor, and their magnetic properties are reported. Three tris-donor systems are reported bearing three BEDT-TTF derivatives with ester links to a core derived from benzene-1,3,5-tricarboxylic acid. The stereochemistry and molecular structure of the donors are discussed. X-ray crystal structures of two BEDT-TTF donors are reported: one with two CH(OMe)2 groups and with one a -CH2N(CH2CO2Me)2 side chain.





2020 ◽  
Vol 295 (36) ◽  
pp. 12618-12634
Author(s):  
H. Diessel Duan ◽  
Nishya Mohamed-Raseek ◽  
Anne-Frances Miller

A remarkable charge transfer (CT) band is described in the bifurcating electron transfer flavoprotein (Bf-ETF) from Rhodopseudomonas palustris (RpaETF). RpaETF contains two FADs that play contrasting roles in electron bifurcation. The Bf-FAD accepts electrons pairwise from NADH, directs one to a lower-reduction midpoint potential (E°) carrier, and the other to the higher-E° electron transfer FAD (ET-FAD). Previous work noted that a CT band at 726 nm formed when ET-FAD was reduced and Bf-FAD was oxidized, suggesting that both flavins participate. However, existing crystal structures place them too far apart to interact directly. We present biochemical experiments addressing this conundrum and elucidating the nature of this CT species. We observed that RpaETF missing either FAD lacked the 726 nm band. Site-directed mutagenesis near either FAD produced altered yields of the CT species, supporting involvement of both flavins. The residue substitutions did not alter the absorption maximum of the signal, ruling out contributions from residue orbitals. Instead, we propose that the residue identities modulate the population of a protein conformation that brings the ET-flavin and Bf-flavin into direct contact, explaining the 726 nm band based on a CT complex of reduced ET-FAD and oxidized Bf-FAD. This is corroborated by persistence of the 726 nm species during gentle protein denaturation and simple density functional theory calculations of flavin dimers. Although such a CT complex has been demonstrated for free flavins, this is the first observation of such, to our knowledge, in an enzyme. Thus, Bf-ETFs may optimize electron transfer efficiency by enabling direct flavin-flavin contact.



Sign in / Sign up

Export Citation Format

Share Document