scholarly journals Comparative analysis of tandem C2 domains from the mammalian synaptotagmin family

2004 ◽  
Vol 378 (2) ◽  
pp. 681-686 ◽  
Author(s):  
Colin RICKMAN ◽  
Molly CRAXTON ◽  
Shona OSBORNE ◽  
Bazbek DAVLETOV

Intracellular membrane traffic is governed by a conserved set of proteins, including Syts (synaptotagmins). The mammalian Syt family includes 15 isoforms. Syts are membrane proteins that possess tandem C2 domains (C2AB) implicated in calcium-dependent phospholipid binding. We performed a pair-wise amino acid sequence comparison, together with functional studies of rat Syt C2ABs, to examine common and divergent properties within the mammalian family. Sequence analysis indicates three different C2AB classes, the members of which share a high degree of sequence similarity. All the other C2ABs are highly divergent in sequence. Nearly half of the Syt family does not exhibit calcium/phospholipid binding in comparison to Syt I, the major brain isoform. Syts do, however, possess a more conserved function, namely calcium-independent binding to target SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) heterodimers. All tested isoforms, except Syt XII and Syt XIII, bound the target SNARE heterodimer comprising syntaxin 1 and SNAP-25 (25 kDa synaptosome-associated protein). Our present study suggests that many Syt isoforms can function in membrane trafficking to interact with the target SNARE heterodimer on the pathway to calcium-triggered membrane fusion.

2012 ◽  
Vol 92 (4) ◽  
pp. 1915-1964 ◽  
Author(s):  
Haruo Kasai ◽  
Noriko Takahashi ◽  
Hiroshi Tokumaru

The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.


2011 ◽  
Vol 195 (2) ◽  
pp. 203-215 ◽  
Author(s):  
Rachel Kama ◽  
Vydehi Kanneganti ◽  
Christian Ungermann ◽  
Jeffrey E. Gerst

The human Batten disease gene CLN3 and yeast orthologue BTN1 encode proteins of unclear function. We show that the loss of BTN1 phenocopies that of BTN2, which encodes a retromer accessory protein involved in the retrieval of specific cargo from late endosomes (LEs) to the Golgi. However, Btn1 localizes to Golgi and regulates soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) function to control retrograde transport. Specifically, BTN1 overexpression and deletion have opposing effects on phosphorylation of the Sed5 target membrane SNARE, on Golgi SNARE assembly, and on Golgi integrity. Although Btn1 does not interact physically with SNAREs, it regulates Sed5 phosphorylation by modulating Yck3, a palmitoylated endosomal kinase. This may involve modification of the Yck3 lipid anchor, as substitution with a transmembrane domain suppresses the deletion of BTN1 and restores trafficking. Correspondingly, deletion of YCK3 mimics that of BTN1 or BTN2 with respect to LE–Golgi retrieval. Thus, Btn1 controls retrograde sorting by regulating SNARE phosphorylation and assembly, a process that may be adversely affected in Batten Disease patients.


2006 ◽  
Vol 34 (5) ◽  
pp. 687-690 ◽  
Author(s):  
S. Wang ◽  
S.C. Hsu

Exocytosis is a highly ordered vesicle trafficking pathway that targets proteins to the plasma membrane for membrane addition or secretion. Research over the years has discovered many proteins that participate at various stages in the mammalian exocytotic pathway. At the early stage of exocytosis, co-atomer proteins and their respective adaptors and GTPases have been shown to play a role in the sorting and incorporation of proteins into secretory vesicles. At the final stage of exocytosis, SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) and SNARE-associated proteins are believed to mediate the fusion of secretory vesicles at the plasma membrane. There are multiple events that may occur between the budding of secretory vesicles from the Golgi and the fusion of these vesicles at the plasma membrane. The most obvious and best-known event is the transport of secretory vesicles from Golgi to the vicinity of the plasma membrane via microtubules and their associated motors. At the vicinity of the plasma membrane, however, it is not clear how vesicles finally dock and fuse with the plasma membrane. Identification of proteins involved in these events should provide important insights into the mechanisms of this little known stage of the exocytotic pathway. Currently, a protein complex, known as the sec6/8 or the exocyst complex, has been implicated to play a role at this late stage of exocytosis.


1999 ◽  
Vol 10 (7) ◽  
pp. 2285-2295 ◽  
Author(s):  
David M. Thomas ◽  
Gregory D. Ferguson ◽  
Harvey R. Herschman ◽  
Lisa A. Elferink

Synaptotagmins (Syts) are a family of vesicle proteins that have been implicated in both regulated neurosecretion and general membrane trafficking. Calcium-dependent interactions mediated through their C2 domains are proposed to contribute to the mechanism by which Syts trigger calcium-dependent neurotransmitter release. Syt IV is a novel member of the Syt family that is induced by cell depolarization and has a rapid rate of synthesis and a short half-life. Moreover, the C2A domain of Syt IV does not bind calcium. We have examined the biochemical and functional properties of the C2 domains of Syt IV. Consistent with its non–calcium binding properties, the C2A domain of Syt IV binds syntaxin isoforms in a calcium-independent manner. In neuroendocrine pheochromocytoma (PC12) cells, Syt IV colocalizes with Syt I in the tips of the neurites. Microinjection of the C2A domain reveals that calcium-independent interactions mediated through this domain of Syt IV inhibit calcium-mediated neurotransmitter release from PC12 cells. Conversely, the C2B domain of Syt IV contains calcium binding properties, which permit homo-oligomerization as well as hetero-oligomerization with Syt I. Our observation that different combinatorial interactions exist between Syt and syntaxin isoforms, coupled with the calcium stimulated hetero-oligomerization of Syt isoforms, suggests that the secretory machinery contains a vast repertoire of biochemical properties for sensing calcium and regulating neurotransmitter release accordingly.


2010 ◽  
Vol 188 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Rubén Fernández-Busnadiego ◽  
Benoît Zuber ◽  
Ulrike Elisabeth Maurer ◽  
Marek Cyrklaff ◽  
Wolfgang Baumeister ◽  
...  

The presynaptic terminal contains a complex network of filaments whose precise organization and functions are not yet understood. The cryoelectron tomography experiments reported in this study indicate that these structures play a prominent role in synaptic vesicle release. Docked synaptic vesicles did not make membrane to membrane contact with the active zone but were instead linked to it by tethers of different length. Our observations are consistent with an exocytosis model in which vesicles are first anchored by long (>5 nm) tethers that give way to multiple short tethers once vesicles enter the readily releasable pool. The formation of short tethers was inhibited by tetanus toxin, indicating that it depends on soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor complex assembly. Vesicles were extensively interlinked via a set of connectors that underwent profound rearrangements upon synaptic stimulation and okadaic acid treatment, suggesting a role of these connectors in synaptic vesicle mobilization and neurotransmitter release.


2004 ◽  
Vol 384 (2) ◽  
pp. 233-237 ◽  
Author(s):  
Michael VEIT

The yeast SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein Ykt6 was shown to mediate palmitoylation of the fusion factor Vac8 in a reaction essential for the fusion of vacuoles. Here I present evidence that hYkt6 (human Ykt6) has self-palmitoylating activity. Incubation of recombinant hYkt6 with [3H]Pal-CoA ([3H]palmitoyl-CoA) leads to covalent attachment of palmitate to C-terminal cysteine residues. The N-terminal domain of human Ykt6 contains a Pal-CoA binding site and is required for the reaction.


Sign in / Sign up

Export Citation Format

Share Document