scholarly journals Probing Zn2+-binding effects on the zinc-ribbon domain of human general transcription factor TFIIB

2004 ◽  
Vol 378 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Mahua GHOSH ◽  
Laura M. ELSBY ◽  
Tapas K. MAL ◽  
Jane M. GOODING ◽  
Stefan G. E. ROBERTS ◽  
...  

The general transcription factor, TFIIB, plays an important role in the assembly of the pre-initiation complex. The N-terminal domain (NTD) of TFIIB contains a zinc-ribbon motif, which is responsible for the recruitment of RNA polymerase II and TFIIF to the core promoter region. Although zinc-ribbon motif structures of eukaryotic and archaeal TFIIBs have been reported previously, the structural role of Zn2+ binding to TFIIB remains to be determined. In the present paper, we report NMR and biochemical studies of human TFIIB NTD, which characterize the structure and dynamics of the TFIIB Zn2+-binding domain in both Zn2+-bound and -free states. The NMR data show that, whereas the backbone fold of NTD is pre-formed in the apo state, Zn2+ binding reduces backbone mobility in the β-turn (Arg28–Gly30), induces enhanced structural rigidity of the charged-cluster domain in the central linker region of TFIIB and appends a positive surface charge within the Zn2+-binding site. V8 protease-sensitivity assays of full-length TFIIB support the Zn2+-dependent structural changes. These structural effects of Zn2+ binding on TFIIB may have a critical role in interactions with its binding partners, such as the Rpb1 subunit of RNA polymerase II.

2008 ◽  
Vol 36 (4) ◽  
pp. 595-598 ◽  
Author(s):  
Laura M. Elsby ◽  
Stefan G.E. Roberts

Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a pre-initiation complex. The general transcription factor TF (transcription factor) IIB plays a central role in the assembly of the pre-initiation complex, providing a bridge between promoter-bound TFIID and RNA polymerase II/TFIIF. We have characterized a series of TFIIB mutants in their ability to support transcription and recruit RNA polymerase II to the promoter. Our analyses identify several residues within the TFIIB zinc ribbon that are required for RNA polymerase II assembly. Using the structural models of TFIIB, we describe the interface between the TFIIB zinc ribbon region and RNA polymerase II.


2006 ◽  
Vol 34 (6) ◽  
pp. 1051-1053 ◽  
Author(s):  
W. Deng ◽  
S.G.E. Roberts

The general transcription factor TFIIB (transcription factor IIB) plays a critical role in the assembly of the RNA polymerase II pre-initiation complex. TFIIB can make sequence-specific DNA contacts both upstream and downstream of the TATA box. This has led to the definition of two core promoter BREs (TFIIB-recognition elements), one upstream [BREu (upstream BRE)] and one downstream of TATA box [BREd (downstream BRE)]. TFIIB–BREu and TFIIB–BREd contacts are mediated by two independent DNA-recognition motifs within the core domain of TFIIB. Both the BREu and the BREd modulate the transcriptional potency of a promoter. However, the net effect of the BREs on promoter activity is dependent on the specific blend of elements present within a core promoter.


2004 ◽  
Vol 32 (6) ◽  
pp. 1098-1099 ◽  
Author(s):  
L.M. Elsby ◽  
S.G.E. Roberts

Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a preinitiaiton complex. TFIIB (transcription factor IIB) plays a central role in this process, mediating the recruitment of RNA polymerase II and positioning it over the transcription start site. The assembly of TFIIB at the promoter can be a limiting event and several activator proteins have been shown to target TFIIB recruitment in the process of transcriptional stimulation. TFIIB is composed of two domains that engage in an intramolecular interaction. Indeed, the conformation of TFIIB has been found to underpin the function of this general transcription factor. Here we discuss our current understanding of TFIIB conformation and its role in transcription control.


2017 ◽  
Vol 89 (4) ◽  
pp. 730-745 ◽  
Author(s):  
Elena Babiychuk ◽  
Khai Trinh Hoang ◽  
Klaas Vandepoele ◽  
Eveline Van De Slijke ◽  
Danny Geelen ◽  
...  

1992 ◽  
Vol 12 (1) ◽  
pp. 30-37
Author(s):  
M T Killeen ◽  
J F Greenblatt

RAP30/74 is a human general transcription factor that binds to RNA polymerase II and is required for initiation of transcription in vitro regardless of whether the promoter has a recognizable TATA box (Z. F. Burton, M. Killeen, M. Sopta, L. G. Ortolan, and J. F. Greenblatt, Mol. Cell. Biol. 8:1602-1613, 1988). Part of the amino acid sequence of RAP30, the small subunit of RAP30/74, has limited homology with part of Escherichia coli sigma 70 (M. Sopta, Z. F. Burton, and J. Greenblatt, Nature (London) 341:410-414, 1989). To determine which sigmalike activities of RAP30/74 could be attributed to RAP30, we purified human RAP30 and a RAP30-glutathione-S-transferase fusion protein that had been produced in E. coli. Bacterially produced RAP30 bound to RNA polymerase II in the absence of RAP74. Both partially purified natural RAP30/74 and recombinant RAP30 prevented RNA polymerase II from binding nonspecifically to DNA. In addition, nonspecific transcription by RNA polymerase II was greatly inhibited by RAP30-glutathione-S-transferase. DNA-bound RNA polymerase II could be removed from DNA by partially purified RAP30/74 but not by bacterially expressed RAP30. Thus, the ability of RAP30/74 to recruit RNA polymerase II to a promoter-bound preinitiation complex may be an indirect consequence of its ability to suppress nonspecific binding of RNA polymerase II to DNA.


EMBO Reports ◽  
2001 ◽  
Vol 2 (9) ◽  
pp. 808-813 ◽  
Author(s):  
Gerhard Mittler ◽  
Elisabeth Kremmer ◽  
H Th. Marc Timmers ◽  
Michael Meisterernst

2004 ◽  
Vol 279 (50) ◽  
pp. 51719-51721 ◽  
Author(s):  
Mohamed Ouhammouch ◽  
Finn Werner ◽  
Robert O. J. Weinzierl ◽  
E. Peter Geiduschek

The core components of the archaeal transcription apparatus closely resemble those of eukaryotic RNA polymerase II, while the DNA-binding transcriptional regulators are predominantly of bacterial type. Here we report the construction of an entirely recombinant system for positively regulated archaeal transcription. By omitting individual subunits, or sets of subunits, from thein vitroassembly of the 12-subunit RNA polymerase from the hyperthermophileMethanocaldococcus jannaschii, we describe a functional dissection of this RNA polymerase II-like enzyme, and its interactions with the general transcription factor TFE, as well as with the transcriptional activator Ptr2.


2017 ◽  
Author(s):  
Kapil Gupta ◽  
Aleksandra A. Watson ◽  
Tiago Baptista ◽  
Elisabeth Scheer ◽  
Anna L. Chambers ◽  
...  

AbstractGeneral transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-binding domain (CTID) in TAF13 which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.


2020 ◽  
Vol 32 (5) ◽  
pp. 1449-1463 ◽  
Author(s):  
Wojciech Antosz ◽  
Jules Deforges ◽  
Kevin Begcy ◽  
Astrid Bruckmann ◽  
Yves Poirier ◽  
...  

2000 ◽  
Vol 20 (7) ◽  
pp. 2350-2357 ◽  
Author(s):  
Yaxin Yu ◽  
Peter Eriksson ◽  
David J. Stillman

ABSTRACT Recent work has shown that transcription of the yeastHO gene involves the sequential recruitment of a series of transcription factors. We have performed a functional analysis ofHO regulation by determining the ability of mutations inSIN1, SIN3, RPD3, andSIN4 negative regulators to permit HOexpression in the absence of certain activators. Mutations in theSIN1 (=SPT2) gene do not affect HOregulation, in contrast to results of other studies using anHO:lacZ reporter, and our data show that the regulatory properties of an HO:lacZ reporter differ from that of the native HO gene. Mutations in SIN3 andRPD3, which encode components of a histone deacetylase complex, show the same pattern of genetic suppression, and this suppression pattern differs from that seen in a sin4mutant. The Sin4 protein is present in two transcriptional regulatory complexes, the RNA polymerase II holoenzyme/mediator and the SAGA histone acetylase complex. Our genetic analysis allows us to conclude that Swi/Snf chromatin remodeling complex has multiple roles inHO activation, and the data suggest that the ability of the SBF transcription factor to bind to the HO promoter may be affected by the acetylation state of the HO promoter. We also demonstrate that the Nhp6 architectural transcription factor, encoded by the redundant NHP6A and NHP6B genes, is required for HO expression. Suppression analysis withsin3, rpd3, and sin4 mutations suggests that Nhp6 and Gcn5 have similar functions. A gcn5 nhp6a nhp6b triple mutant is extremely sick, suggesting that the SAGA complex and the Nhp6 architectural transcription factors function in parallel pathways to activate transcription. We find that disruption ofSIN4 allows this strain to grow at a reasonable rate, indicating a critical role for Sin4 in detecting structural changes in chromatin mediated by Gcn5 and Nhp6. These studies underscore the critical role of chromatin structure in regulating HO gene expression.


Sign in / Sign up

Export Citation Format

Share Document