The role of TFIIB conformation in transcriptional regulation

2004 ◽  
Vol 32 (6) ◽  
pp. 1098-1099 ◽  
Author(s):  
L.M. Elsby ◽  
S.G.E. Roberts

Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a preinitiaiton complex. TFIIB (transcription factor IIB) plays a central role in this process, mediating the recruitment of RNA polymerase II and positioning it over the transcription start site. The assembly of TFIIB at the promoter can be a limiting event and several activator proteins have been shown to target TFIIB recruitment in the process of transcriptional stimulation. TFIIB is composed of two domains that engage in an intramolecular interaction. Indeed, the conformation of TFIIB has been found to underpin the function of this general transcription factor. Here we discuss our current understanding of TFIIB conformation and its role in transcription control.

2008 ◽  
Vol 36 (4) ◽  
pp. 595-598 ◽  
Author(s):  
Laura M. Elsby ◽  
Stefan G.E. Roberts

Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a pre-initiation complex. The general transcription factor TF (transcription factor) IIB plays a central role in the assembly of the pre-initiation complex, providing a bridge between promoter-bound TFIID and RNA polymerase II/TFIIF. We have characterized a series of TFIIB mutants in their ability to support transcription and recruit RNA polymerase II to the promoter. Our analyses identify several residues within the TFIIB zinc ribbon that are required for RNA polymerase II assembly. Using the structural models of TFIIB, we describe the interface between the TFIIB zinc ribbon region and RNA polymerase II.


2004 ◽  
Vol 378 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Mahua GHOSH ◽  
Laura M. ELSBY ◽  
Tapas K. MAL ◽  
Jane M. GOODING ◽  
Stefan G. E. ROBERTS ◽  
...  

The general transcription factor, TFIIB, plays an important role in the assembly of the pre-initiation complex. The N-terminal domain (NTD) of TFIIB contains a zinc-ribbon motif, which is responsible for the recruitment of RNA polymerase II and TFIIF to the core promoter region. Although zinc-ribbon motif structures of eukaryotic and archaeal TFIIBs have been reported previously, the structural role of Zn2+ binding to TFIIB remains to be determined. In the present paper, we report NMR and biochemical studies of human TFIIB NTD, which characterize the structure and dynamics of the TFIIB Zn2+-binding domain in both Zn2+-bound and -free states. The NMR data show that, whereas the backbone fold of NTD is pre-formed in the apo state, Zn2+ binding reduces backbone mobility in the β-turn (Arg28–Gly30), induces enhanced structural rigidity of the charged-cluster domain in the central linker region of TFIIB and appends a positive surface charge within the Zn2+-binding site. V8 protease-sensitivity assays of full-length TFIIB support the Zn2+-dependent structural changes. These structural effects of Zn2+ binding on TFIIB may have a critical role in interactions with its binding partners, such as the Rpb1 subunit of RNA polymerase II.


2017 ◽  
Vol 89 (4) ◽  
pp. 730-745 ◽  
Author(s):  
Elena Babiychuk ◽  
Khai Trinh Hoang ◽  
Klaas Vandepoele ◽  
Eveline Van De Slijke ◽  
Danny Geelen ◽  
...  

1992 ◽  
Vol 12 (1) ◽  
pp. 30-37
Author(s):  
M T Killeen ◽  
J F Greenblatt

RAP30/74 is a human general transcription factor that binds to RNA polymerase II and is required for initiation of transcription in vitro regardless of whether the promoter has a recognizable TATA box (Z. F. Burton, M. Killeen, M. Sopta, L. G. Ortolan, and J. F. Greenblatt, Mol. Cell. Biol. 8:1602-1613, 1988). Part of the amino acid sequence of RAP30, the small subunit of RAP30/74, has limited homology with part of Escherichia coli sigma 70 (M. Sopta, Z. F. Burton, and J. Greenblatt, Nature (London) 341:410-414, 1989). To determine which sigmalike activities of RAP30/74 could be attributed to RAP30, we purified human RAP30 and a RAP30-glutathione-S-transferase fusion protein that had been produced in E. coli. Bacterially produced RAP30 bound to RNA polymerase II in the absence of RAP74. Both partially purified natural RAP30/74 and recombinant RAP30 prevented RNA polymerase II from binding nonspecifically to DNA. In addition, nonspecific transcription by RNA polymerase II was greatly inhibited by RAP30-glutathione-S-transferase. DNA-bound RNA polymerase II could be removed from DNA by partially purified RAP30/74 but not by bacterially expressed RAP30. Thus, the ability of RAP30/74 to recruit RNA polymerase II to a promoter-bound preinitiation complex may be an indirect consequence of its ability to suppress nonspecific binding of RNA polymerase II to DNA.


2001 ◽  
Vol 21 (14) ◽  
pp. 4427-4440 ◽  
Author(s):  
Silviu L. Faitar ◽  
Seth A. Brodie ◽  
Alfred S. Ponticelli

ABSTRACT The general transcription factor IIB (TFIIB) is required for transcription of class II genes by RNA polymerase II. Previous studies demonstrated that mutations in the Saccharomyces cerevisiae SUA7 gene, which encodes TFIIB, can alter transcription initiation patterns in vivo. To further delineate the functional domain and residues of TFIIB involved in transcription start site utilization, a genetic selection was used to isolate S. cerevisiae TFIIB mutants exhibiting downstream shifts in transcription initiation in vivo. Both dominant and recessive mutations conferring downstream shifts were identified at multiple positions within a highly conserved homology block in the N-terminal region of the protein. The TFIIB mutations conferred downstream shifts in transcription initiation at the ADH1 and CYC1 promoters, whereas no significant shifts were observed at the HIS3 promoter. Analysis of a series of ADH1-HIS3 hybrid promoters and variant ADH1 and HIS3 promoters containing insertions, deletions, or site-directed base substitutions revealed that the feature that renders a promoter sensitive to TFIIB mutations is the sequence in the immediate vicinity of the normal start sites. We discuss these results in light of possible models for the mechanism of start site utilization by S. cerevisiae RNA polymerase II and the role played by TFIIB.


2004 ◽  
Vol 279 (50) ◽  
pp. 51719-51721 ◽  
Author(s):  
Mohamed Ouhammouch ◽  
Finn Werner ◽  
Robert O. J. Weinzierl ◽  
E. Peter Geiduschek

The core components of the archaeal transcription apparatus closely resemble those of eukaryotic RNA polymerase II, while the DNA-binding transcriptional regulators are predominantly of bacterial type. Here we report the construction of an entirely recombinant system for positively regulated archaeal transcription. By omitting individual subunits, or sets of subunits, from thein vitroassembly of the 12-subunit RNA polymerase from the hyperthermophileMethanocaldococcus jannaschii, we describe a functional dissection of this RNA polymerase II-like enzyme, and its interactions with the general transcription factor TFE, as well as with the transcriptional activator Ptr2.


2006 ◽  
Vol 34 (6) ◽  
pp. 1051-1053 ◽  
Author(s):  
W. Deng ◽  
S.G.E. Roberts

The general transcription factor TFIIB (transcription factor IIB) plays a critical role in the assembly of the RNA polymerase II pre-initiation complex. TFIIB can make sequence-specific DNA contacts both upstream and downstream of the TATA box. This has led to the definition of two core promoter BREs (TFIIB-recognition elements), one upstream [BREu (upstream BRE)] and one downstream of TATA box [BREd (downstream BRE)]. TFIIB–BREu and TFIIB–BREd contacts are mediated by two independent DNA-recognition motifs within the core domain of TFIIB. Both the BREu and the BREd modulate the transcriptional potency of a promoter. However, the net effect of the BREs on promoter activity is dependent on the specific blend of elements present within a core promoter.


2008 ◽  
Vol 82 (22) ◽  
pp. 11446-11453 ◽  
Author(s):  
Carola Vogt ◽  
Ellen Preuss ◽  
Daniel Mayer ◽  
Friedemann Weber ◽  
Martin Schwemmle ◽  
...  

ABSTRACT The ML protein of Thogoto virus, a tick-transmitted orthomyxovirus, is a splice variant of the viral matrix protein and antagonizes the induction of antiviral type I interferon (IFN). Here we identified the general RNA polymerase II transcription factor IIB (TFIIB) as an ML-interacting protein. Overexpression of TFIIB neutralized the inhibitory effect of ML on IRF3-mediated promoter activation. Moreover, a recombinant virus expressing a mutant ML protein unable to bind TFIIB was severely impaired in its ability to suppress IFN induction. We concluded that TFIIB binding is required for the IFN antagonist effect exerted by ML. We further demonstrate that the ML-TFIIB interaction has surprisingly little impact on gene expression in general, while a strong negative effect is observed for IRF3- and NF-κB-regulated promoters.


Sign in / Sign up

Export Citation Format

Share Document