scholarly journals Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea

2005 ◽  
Vol 389 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Cinzia Verde ◽  
M. Cristina De Rosa ◽  
Daniela Giordano ◽  
Donato Mosca ◽  
Donatella De Pascale ◽  
...  

Cartilaginous fish are very ancient organisms. In the Antarctic sea, the modern chondrichthyan genera are poorly represented, with only three species of sharks and eight species of skates; the paucity of chondrichthyans is probably an ecological consequence of unusual trophic or habitat conditions in the Southern Ocean. In the Arctic, there are 26 species belonging to the class Chondrichthyes. Fish in the two polar regions have been subjected to different regional histories that have influenced the development of diversity: Antarctic marine organisms are highly stenothermal, in response to stable water temperatures, whereas the Arctic communities are exposed to seasonal temperature variations. The structure and function of the oxygen-transport haem protein from the Antarctic skate Bathyraja eatonii and from the Arctic skate Raja hyperborea (both of the subclass Elasmobranchii, order Rajiformes, family Rajidae) is reported in the present paper. These species have a single major haemoglobin (Hb 1; over 80% of the total). The Bohr-proton and the organophosphate-binding sites are absent. Thus the haemoglobins of northern and southern polar skates appear functionally similar, whereas differences were observed with several temperate elasmobranchs. Such evidence suggests that, in temperate and polar habitats, physiological adaptations have evolved along distinct pathways, whereas, in this case, the effect of the differences characterizing the two polar environments is negligible.

2000 ◽  
Vol 12 (3) ◽  
pp. 257-257 ◽  
Author(s):  
Andrew Clarke

Theodosius Dobzhansky once remarked that nothing in biology makes sense other than in the light of evolution, thereby emphasising the central role of evolutionary studies in providing the theoretical context for all of biology. It is perhaps surprising then that evolutionary biology has played such a small role to date in Antarctic science. This is particularly so when it is recognised that the polar regions provide us with an unrivalled laboratory within which to undertake evolutionary studies. The Antarctic exhibits one of the classic examples of a resistance adaptation (antifreeze peptides and glycopeptides, first described from Antarctic fish), and provides textbook examples of adaptive radiations (for example amphipod crustaceans and notothenioid fish). The land is still largely in the grip of major glaciation, and the once rich terrestrial floras and faunas of Cenozoic Gondwana are now highly depauperate and confined to relatively small patches of habitat, often extremely isolated from other such patches. Unlike the Arctic, where organisms are returning to newly deglaciated land from refugia on the continental landmasses to the south, recolonization of Antarctica has had to take place by the dispersal of propagules over vast distances. Antarctica thus offers an insight into the evolutionary responses of terrestrial floras and faunas to extreme climatic change unrivalled in the world. The sea forms a strong contrast to the land in that here the impact of climate appears to have been less severe, at least in as much as few elements of the fauna show convincing signs of having been completely eradicated.


2020 ◽  
Vol 13 (3) ◽  
pp. 326-340
Author(s):  
Paulo Borba Casella ◽  
◽  
Maria Lagutina ◽  
Arthur Roberto Capella Giannattasio ◽  
◽  
...  

The current international legal regulation of the Arctic and Antarctica was organized during the second half of the XX century to establish an international public power over the two regions, the Arctic Council (AC) and the Antarctic Treaty System (ATS), which is characterized by Euro-American dominance. However, the rise of emerging countries at the beginning of the XXI century suggests a progressive redefinition of the structural balance of international power in favor of states not traditionally perceived as European and Western. This article examines the role of Brazil within the AC and the ATS to address various polar issues, even institutional ones. As a responsible country in the area of cooperation in science and technology in the oceans and polar regions in BRICS, Brazil appeals to its rich experience in Antarctica and declares its interest in joining the Arctic cooperation. For Brazil, participation in polar cooperation is a way to increase its role in global affairs and BRICS as a negotiating platform. It is seen in this context as a promising tool to achieve this goal. This article highlights new paths in the research agenda concerning interests and prospects of Brazilian agency in the polar regions.


2013 ◽  
Vol 5 (1) ◽  
pp. 233-251 ◽  
Author(s):  
Donald R. Rothwell

Abstract The polar regions are increasingly coming to the forefront of global affairs in ways that are beginning to approach the prominence given to the polar regions during the ‘heroic era’ of exploration at the beginning of the twentieth century. This contemporary focus is, however, very much upon governance and the capacity of the existing and future legal frameworks to govern the Antarctic and Arctic effectively. This article revisits foundational research undertaken in 1992–1993 and reassesses the impact of the polar regions upon the development of international law. Particular attention is given to environmental management, living and nonliving resource management, the regulation and management of maritime areas, and governance mechanisms and frameworks. The article seeks to critically assess whether the existing legal frameworks that operate in Antarctica and the Arctic are capable of dealing with their increasing globalisation, or whether there will be a need for new legal and governance regimes to be developed to address twenty-first century challenges.


Polar Record ◽  
1997 ◽  
Vol 33 (184) ◽  
pp. 13-20 ◽  
Author(s):  
Margaret E. Johnston

AbstractControlling visitor impacts in polar regions continues to be important in both the Antarctic and Arctic. Concerns relate to impacts on the physical environment, cultural heritage, and host communities or scientific bases, as well as a recognition that safety and liability are major issues for governments, commercial operators, and local populations. Strategies for controlling tourists include visitor and operator codes and formal legislation. This paper summarises several approaches to visitor regulation in polar regions in order to illustrate the ways in which concerns about tourist impacts are being addressed. Similar issues arise throughout the polar regions, although in some places a particular emphasis might indicate a specific area of concern for a community, region, nation, or segment of the tourism industry. While a comprehensive strategy might be appropriate in many respects in the Arctic, it is also important to acknowledge the significance of more specific concerns. This paper first describes regulation of tourist behaviour and considers general issues of strategy effectiveness. Then it examines the approaches to visitor regulation used in the Antarctic and on S valbard as examples that may be of use in the further development of strategies in the Arctic. The paper then discusses an evolving strategy for control in the Northwest Territories, Canada. This strategy differs from these other approaches in that it targets a specific segment of the visitor population: those undertaking adventure expeditions.


2018 ◽  
Vol 18 (24) ◽  
pp. 17895-17907 ◽  
Author(s):  
Oscar B. Dimdore-Miles ◽  
Paul I. Palmer ◽  
Lori P. Bruhwiler

Abstract. We consider the utility of the annual inter-polar difference (IPD) as a metric for changes in Arctic emissions of methane (CH4). The IPD has been previously defined as the difference between weighted annual means of CH4 mole fraction data collected at stations from the two polar regions (defined as latitudes poleward of 53∘ N and 53∘ S, respectively). This subtraction approach (IPD) implicitly assumes that extra-polar CH4 emissions arrive within the same calendar year at both poles. We show using a continuous version of the IPD that the metric includes not only changes in Arctic emissions but also terms that represent atmospheric transport of air masses from lower latitudes to the polar regions. We show the importance of these atmospheric transport terms in understanding the IPD using idealized numerical experiments with the TM5 global 3-D atmospheric chemistry transport model that is run from 1980 to 2010. A northern mid-latitude pulse in January 1990, which increases prior emission distributions, arrives at the Arctic with a higher mole fraction and ≃12 months earlier than at the Antarctic. The perturbation at the poles subsequently decays with an e-folding lifetime of ≃4 years. A similarly timed pulse emitted from the tropics arrives with a higher value at the Antarctic ≃11 months earlier than at the Arctic. This perturbation decays with an e-folding lifetime of ≃7 years. These simulations demonstrate that the assumption of symmetric transport of extra-polar emissions to the poles is not realistic, resulting in considerable IPD variations due to variations in emissions and atmospheric transport. We assess how well the annual IPD can detect a constant annual growth rate of Arctic emissions for three scenarios, 0.5 %, 1 %, and 2 %, superimposed on signals from lower latitudes, including random noise. We find that it can take up to 16 years to detect the smallest prescribed trend in Arctic emissions at the 95 % confidence level. Scenarios with higher, but likely unrealistic, growth in Arctic emissions are detected in less than a decade. We argue that a more reliable measurement-driven approach would require data collected from all latitudes, emphasizing the importance of maintaining a global monitoring network to observe decadal changes in atmospheric greenhouse gases.


Polar Record ◽  
2008 ◽  
Vol 44 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Øystein Jensen

ABSTRACTWith the International Polar Year (IPY) having commenced in March 2007, key issues relating to the polar regions are again in focus. This article reviews one central legal issue re-emerging in the Arctic: global regulation of safety standards for international shipping. The ‘Guidelines for ships operating in Arctic ice-covered waters’ are examined, with a view to the probable expansion of shipping in the Arctic in near future. Following an introduction to navigational issues within the Arctic context, the article describes how the guidelines came into being, and then analyses key elements and structure of the regulations and shortfalls of today's arrangements. The possible relevance of the guidelines to the Antarctic is also discussed briefly. Finally, the article inquires into the key repercussions of introducing binding regulations.


1991 ◽  
Vol 3 (4) ◽  
pp. 443-449 ◽  
Author(s):  
L.N. Yurganov ◽  
V.F. Radionov

Atmospheric carbon monoxide and methane were studied spectroscopically in the Arctic and Antarctic. Seasonal variations of CO are evident in both polar regions, absolute values of abundance being three times larger in the Arctic than in the Antarctic. Increasing concentration trends were confirmed for both gases: 0.8% per year for Antarctic CO, 0.5% per year for Antarctic CH4 and 3.1% per year for Arctic CH4.


2009 ◽  
Vol 1 (1) ◽  
pp. 145-174
Author(s):  
David Leary

Abstract Bioprospecting is occurring in the Arctic and Antarctica. This paper considers evidence on the nature and scale of bioprospecting in the Polar Regions. The paper then aims to draw out some of the critical issues in this debate by examining recent developments in the context of the Antarctic Treaty System. After an introduction to the history of the debate on bioprospecting in the Antarctic context it examines the recent Report of the Antarctic Treaty Consultative Meeting (‘ATCM’) Intersessional Contact Group to examine the issue of Biologocal Prospecting in the Antarctic Treaty Area tabled at ATCM XVII in Kiev in June 2008. The paper then concludes with some brief thoughts on the relevance of the Arctic experience to the debate in relation to Antarctica and whether or not there is an ‘Arctic Model’ for a response to the bioprospecting question in Antarctica. It is argued that rather than there being one Arctic model there is in fact a spectrum of models and experiences to choose from.


1998 ◽  
Vol 10 (3) ◽  
pp. 345-362 ◽  
Author(s):  
Paul A. Berkman ◽  
John T. Andrews ◽  
Svante Björck ◽  
Eric A. Colhoun ◽  
Steven D. Emslie ◽  
...  

This review assesses the circumpolar occurrence of emerged marine macrofossils and sediments from Antarctic coastal areas in relation to Late Quaternary climate changes. Radiocarbon ages of the macrofossils, which are interpreted in view of the complexities of the Antarctic marine radiocarbon reservoir and resolution of this dating technique, show a bimodal distribution. The data indicate that marine species inhabited coastal environments from at least 35 000 to 20 000 yr BP, during Marine Isotope Stage 3 when extensive iceberg calving created a ‘meltwater lid’ over the Southern Ocean. The general absence of these marine species from 20 000 to 8500 yr BP coincides with the subsequent advance of the Antarctic ice sheets during the Last Glacial Maximum. Synchronous re-appearance of the Antarctic marine fossils in emerged beaches around the continent, all of which have Holocene marine-limit elevations an order of magnitude lower than those in the Arctic, reflect minimal isostatic rebound as relative sea-level rise decelerated. Antarctic coastal marine habitat changes around the continent also coincided with increasing sea-ice extent and outlet glacial advances during the mid-Holocene. In view of the diverse environmental changes that occurred around the Earth during this period, it is suggested that Antarctic coastal areas were responding to a mid-Holocene climatic shift associated with the hydrological cycle. This synthesis of Late Quaternary emerged marine deposits demonstrates the application of evaluating circum-Antarctic phenomena from the glacial-terrestrial-marine transition zone.


Sign in / Sign up

Export Citation Format

Share Document