scholarly journals Functional characterization of the dimerization domain of the ferric uptake regulator (Fur) of Pseudomonas aeruginosa

2006 ◽  
Vol 400 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Erdeni Bai ◽  
Federico I. Rosell ◽  
Bao Lige ◽  
Marcia R. Mauk ◽  
Barbara Lelj-Garolla ◽  
...  

The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
E. Rigane ◽  
R. Dutoit ◽  
S. Matthijs ◽  
N. Brandt ◽  
S. Flahaut ◽  
...  

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium able to survive in diverse environments such as soil, plants, freshwater, and seawater. P. aeruginosa can be an opportunistic pathogen to humans when their immune system is deficient. Its pathogenicity may be linked to the production of virulence factors. We isolated P. aeruginosa strain RBS from the saltern of Sfax in Tunisia. In this study, we characterized the halotolerance, antibiotic susceptibility, and some virulence factors of strain RBS. High NaCl concentrations inhibited growth and motility. However, biofilm formation was enhanced to protect bacteria against salt stress. Among the 18 antibiotics tested, quinolones and tetracycline showed a significant inhibitory effect on growth, motility, and biofilm formation of strain RBS. β-Lactams, however, did not have any inhibitory effect on neither bacterial growth nor motility. In some cases, resistance was due, in part, to biofilm formation. We also showed that RBS produces two proteases, LasB and AprA, which have been shown to be implicated in host infection. LasB was further characterized to study the role of metal ions in enzyme stability. It possesses two distinct metal ion-binding sites coordinating a calcium and a zinc ion. The effect of metal ion chelation was evaluated as well as substitutions of residues involved in metal ion binding. Impairing metal ion binding of LasB led to a loss of activity and a sharp decrease of stability. Our findings suggest that the binding of both metal ions is interdependent as the two metal ions’ binding sites are linked via a hydrogen bond network.


2004 ◽  
Vol 69 (4) ◽  
pp. 885-896 ◽  
Author(s):  
Luisa Stella Dolci ◽  
Péter Huszthy ◽  
Erika Samu ◽  
Marco Montalti ◽  
Luca Prodi ◽  
...  

Enantiomerically pure dimethyl- and diisobutyl-substituted phenazino-18-crown-6 ligands bind metal and ammonium ions and also primary aralkylammonium perchlorates in acetonitrile with high affinity, causing pronounced changes in their luminescence properties. In addition, they show enantioselectivity towards chiral primary aralkylammonium perchlorates. The possibility to monitor the binding process by photoluminescence spectroscopy can gain ground for the design of very efficient enantioselective chemosensors for chiral species. The observed changes in the photophysical properties are also an important tool for understanding the interactions present in the adduct.


2016 ◽  
Vol 18 (32) ◽  
pp. 22254-22265 ◽  
Author(s):  
Manuel Hitzenberger ◽  
Thomas S. Hofer

The interaction of metal ions with Shh binding-sites and their structural impact are assessed via classical and quantum mechanical simulations.


RSC Advances ◽  
2016 ◽  
Vol 6 (91) ◽  
pp. 88010-88029 ◽  
Author(s):  
Gunjan Agarwal ◽  
Dipali N. Lande ◽  
Debamitra Chakrovarty ◽  
Shridhar P. Gejji ◽  
Prajakta Gosavi-Mirkute ◽  
...  

Bromine substituted aminonaphthoquinones – chemosensors for metal ions.


2022 ◽  
Vol 450 ◽  
pp. 214228
Author(s):  
Francesca Cutruzzolà ◽  
Alessandro Paiardini ◽  
Chiara Scribani Rossi ◽  
Sharon Spizzichino ◽  
Alessio Paone ◽  
...  

1983 ◽  
Vol 61 (12) ◽  
pp. 2740-2744 ◽  
Author(s):  
Isao Yoshida ◽  
Ichiro Murase ◽  
Ramunas J. Motekaitis ◽  
Arthur E. Martell

Synthesis of a new tris-bidentate multidentate ligand, N,N′,N″-tris[2-(N-hydroxycarbamoyl)ethyl]-1,3,5-benzenetricarboxamide (BAMTPH), designed for the binding of trivalent metal ions such as Fe(III), Ga(III), and Al(III), is described. Its cation binding affinities for hydrogen ion and for Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ga(III), and Al(III) ions are described, and the equilibrium data are compared with those of analogous ligands. The binding constants of trivalent metal ions with the ligand do not show a chelate effect relative to the binding to individual bidentate hydroxamic acids.


Sign in / Sign up

Export Citation Format

Share Document