scholarly journals T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain

2008 ◽  
Vol 410 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Ana Lucia Giannini ◽  
Yifang Gao ◽  
Marie-José Bijlmakers

The recently identified RNF125 [RING (really interesting new gene) finger protein 125], or TRAC-1 (T-cell RING protein in activation 1), is unique among ubiquitin ligases in being a positive regulator of T-cell activation. In addition, TRAC-1 has been shown to down-modulate HIV replication and to inhibit pathogen-induced cytokine production. However, apart from the presence of an N-terminal C3HC4 (Cys3-His-Cys4) RING domain, the TRAC-1 protein remains uncharacterized. In the present paper, we report novel interactions and modifications for TRAC-1, and elucidate its domain organization. Specifically, we determine that TRAC-1 associates with membranes and is excluded from the nucleus through myristoylation. Our data are further consistent with a crucial role for the C-terminus in TRAC-1 function. In this region, novel domains were recognized through the identification of three closely related proteins: RNF114, RNF138 and RNF166. TRAC-1 and its relatives were found to contain, apart from the RING domain, a C2HC (Cys2-His-Cys)- and two C2H2 (Cys2-His2)-type zinc fingers, as well as a UIM (ubiquitin-interacting motif). The UIM of TRAC-1 binds Lys48-linked polyubiquitin chains and is, together with the RING domain, required for auto-ubiquitination. As a consequence of auto-ubiquitination, the half-life of TRAC-1 is shorter than 30 min. The identification of these novel modifications, interactions, domains and relatives significantly widens the contexts for investigating TRAC-1 activity and regulation.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4138-4138
Author(s):  
Kankana Bardhan ◽  
Nikolaos Patsoukis ◽  
Donna M Berry ◽  
Jane McGlade ◽  
Vassiliki A. Boussiotis

Abstract TCR stimulation triggers the activation of protein tyrosine kinases resulting in phosphorylation of the adaptor protein LAT. SLP-76, interacts constitutively with PLC-γ1 and with the SH3 domain of Gads, which via its SH2 domain mediates inducible recruitment of SLP-76 and PLC-γ1 to LAT, upon T cell activation. PLC-γ1 hydrolyzes phosphatidylinositol-4, 5 bisphosphate [PI(4,5)P2], generating inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), second messengers responsible for mediating intracellular calcium release and activation of downstream signals. The adaptor protein RIAM constitutively interacts with PLC-γ1 and is required for PLC-γ1 activation. RIAM is a multidomain protein with a small N-terminus proline-rich region, two coiled-coiled regions, sequential Ras association (RA) and pleckstrin homology (PH) domains, and a large C-terminus proline-rich region, which interacts with PLC-γ1. The RA domain of RIAM has specificity for Rap1-GTP whereas the PH domain binds to the PLC-γ1 substrate PI(4,5)P2. The RA-PH domain region of RIAM functions as a single structural unit and mediates translocation of RIAM to the plasma membrane upon T cell activation. Previously, we determined that RIAM deficiency results in impaired activation of PLC-γ1 in spite of the formation of the PLC-γ1-SLP-76-LAT complex, suggesting perhaps somewhat paradoxically, that PLC-γ1-SLP-76-LAT signalosome is not sufficient to mediate distal signaling in the absence of RIAM. This observation indicated that RIAM mediates its effects at a level distal to SLP-76-LAT or through a signaling pathway parallel but distinct from SLP-76-Gads-LAT. Here we investigated whether RIAM forms a signalosome parallel to PLC-γ1-SLP-76-Gads and whether such pathway might be involved in the activation of PLC-γ1. Using primary T lymphocytes and Jurkat T cells stimulated via TCR/CD3 and CD28 we determined that RIAM constitutively interacted with Gads as determined by immunoprecipitation with RIAM-specific antibody followed by Gads immunoblot. To determine whether the interaction between RIAM and Gads was direct, we employed an in vitro protein association assay. Glutathione S-transferase (GST) and GST-fusion protein of Gads were coupled to glutathione-sepharose and incubated with [35S]methionine-labeled RIAM or luciferase, as negative control. Gads bound to [35S]methionine-labeled RIAM indicating that RIAM interacts directly with Gads. We further examined domain-specific interaction of RIAM with endogenous Gads using GST fusion proteins of RIAM. We determined a constitutive interaction between Gads and GST fusion proteins of full-length RIAM or C-terminus region of RIAM. Although a number of tyrosine phosphorylated proteins were associated with the RIAM-Gads complex upon T cell activation, LAT was not detected among the components of this complex as determined by immunoblot with anti-phosphotyrosine-specific or LAT-specific antibodies. Using a GST fusion protein of the RA-PH domain of RIAM we determined that, surprisingly, Gads displayed activation-dependent interaction with the RA-PH domain, which mediates the recruitment of RIAM to the plasma membrane upon T cell activation. Furthermore, in addition to Gads, SLP-76 and PLC-γ1 were recruited to the RA-PH domain of RIAM in activated T cells. To determine whether RIAM and Gads had a synergistic effect on IL-2 transcription, we performed luciferase-based reporter assays using a reporter construct driven by the entire IL-2 promoter or by NFAT binding sequences. We found that RIAM and Gads had a synergistic effect on IL-2 and on NFAT-mediated transcriptional activation, which depends on PLC-γ1. Thus, via its C-terminus region, RIAM directly and constitutively interacts with Gads. In addition, via its RA-PH domain, RIAM mediates an activation-dependent interaction with Gads and serves as a docking site recruiting the PLC-γ1-SLP-76-Gads complex to the plasma membrane in a LAT-independent manner. These findings indicate a crosstalk between RIAM and SLP-76 in the activation of PLC-γ1 and reveal a previously unidentified, alternative signaling pathway leading to Gads-SLP-76 recruitment to the plasma membrane of activated T cells in a LAT-independent manner. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 91 (11) ◽  
Author(s):  
B. Matija Peterlin ◽  
Pingyang Liu ◽  
Xiaoyun Wang ◽  
Daniele Cary ◽  
Wei Shao ◽  
...  

ABSTRACT P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNAArg(UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4+ T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2400-2408 ◽  
Author(s):  
Hui Xu ◽  
Mark S. Williams ◽  
Lisa M. Spain

AbstractThe membrane-spanning 4A (MS4A) family of proteins includes CD20, FcϵRIβ, and HTm4, whose genes are grouped in a chromosomal location that is associated with increased susceptibility to allergy and atopic asthma. One family member, Chandra/MS4a4B, was reported to be expressed in T helper 1 (Th1) T cells but not Th2 T cells. In the present study, Ms4a4b was isolated in a screen of genes differentially expressed during thymocyte development. MS4a4B was detected in immature CD4-CD8-CD44+CD25- thymocytes, turned off during further stages of thymocyte development and reexpressed in mature single-positive thymocytes. MS4a4B expression was found in naive CD8+ and CD4+ peripheral T cells and natural killer (NK) cells but not in B cells. MS4a4B is expressed at the cell surface with its C-terminus located in the cytoplasm. When expressed in a T-cell hybridoma by retroviral vector, MS4a4B protein constitutively associated with lipid raft microdomains, whereas in primary T cells endogenous MS4a4B protein became enriched in rafts after T-cell activation. Overexpression of MS4a4B in primary CD4+ T-cell blasts enhanced T-cell receptor (TCR)-induced Th1 cytokine production. These results suggest that MS4a4B expression is tightly regulated during T-cell development and that MS4a4B expression promotes Th1 function and/or differentiation. (Blood. 2006;107:2400-2408)


2019 ◽  
Vol 93 (10) ◽  
Author(s):  
Hakim Hocini ◽  
Henri Bonnabau ◽  
Christine Lacabaratz ◽  
Cécile Lefebvre ◽  
Pascaline Tisserand ◽  
...  

ABSTRACT HIV controllers (HIC) maintain control of HIV replication without combined antiretroviral treatment (cART). The mechanisms leading to virus control are not fully known. We used gene expression and cellular analyses to compare HIC and HIV-1-infected individuals under cART. In the blood, HIC are characterized by a low inflammation, a downmodulation of natural killer inhibitory cell signaling, and an upregulation of T cell activation gene expression. This balance that persists after stimulation of cells with HIV antigens was consistent with functional analyses showing a bias toward a Th1 and cytotoxic T cell response and a lower production of inflammatory cytokines. Taking advantage of the characterization of HIC based upon their CD8+ T lymphocyte capacity to suppress HIV-infection, we show here that unsupervised analysis of differentially expressed genes fits clearly with this cytotoxic activity, allowing the characterization of a specific signature of HIC. These results reveal significant features of HIC making the bridge between cellular function, gene signatures, and the regulation of inflammation and killing capacity of HIV-specific CD8+ T cells. Moreover, these genetic profiles are consistent through analyses performed from blood to peripheral blood mononuclear cells and T cells. HIC maintain strong HIV-specific immune responses with low levels of inflammation. Our findings may pave the way for new immunotherapeutic approaches leading to strong HIV-1-specific immune responses while minimizing inflammation. IMPORTANCE A small minority of HIV-infected patients, called HIV controllers (HIC), maintains spontaneous control of HIV replication. It is therefore important to identify mechanisms that contribute to the control of HIV replication that may have implications for vaccine design. We observed a low inflammation, a downmodulation of natural killer inhibitory cell signaling, and an upregulation of T-cell activation gene expression in the blood of HIC compared to patients under combined antiretroviral treatment. This profile persists following in vitro stimulation of peripheral blood mononuclear cells with HIV antigens, and was consistent with functional analyses showing a Th1 and cytotoxic T cell response and a lower production of inflammatory cytokines. These results reveal significant features of HIC that maintain strong HIV-specific immune responses with low levels of inflammation. These findings define the immune status of HIC that is probably associated with the control of viral load.


AIDS ◽  
2005 ◽  
Vol 19 (10) ◽  
pp. 1007-1014 ◽  
Author(s):  
Massimo Alfano ◽  
Jean-Charles Grivel ◽  
Silvia Ghezzi ◽  
Davide Corti ◽  
Matteo Trimarchi ◽  
...  

2009 ◽  
Vol 29 (19) ◽  
pp. 5348-5356 ◽  
Author(s):  
An Chen ◽  
Beixue Gao ◽  
Jingping Zhang ◽  
Tamara McEwen ◽  
Shui Q. Ye ◽  
...  

ABSTRACT E3 ubiquitin ligases, which target specific molecules for proteolytic destruction, have emerged as key regulators of immune functions. Several E3 ubiquitin ligases, including c-Cbl, Cbl-b, GRAIL, Itch, and Nedd4, have been shown to negatively regulate T-cell activation. Here, we report that the HECT-type E3 ligase AIP2 positively regulates T-cell activation. Ectopic expression of AIP2 in mouse primary T cells enhances their proliferation and interleukin-2 production by suppressing the apoptosis of T cells. AIP2 interacts with and promotes ubiquitin-mediated degradation of EGR2, a zinc finger transcription factor that has been found to regulate Fas ligand (FasL) expression during activation-induced T-cell death. Suppression of AIP2 expression by small RNA interference upregulates EGR2, inhibits EGR2 ubiquitination and FasL expression, and enhances the apoptosis of T cells. Therefore, AIP2 regulates activation-induced T-cell death by suppressing EGR2-mediated FasL expression via the ubiquitin pathway.


Sign in / Sign up

Export Citation Format

Share Document