A gain-of-function mutant of Munc18-1 stimulates secretory granule recruitment and exocytosis and reveals a direct interaction of Munc18-1 with Rab3

2007 ◽  
Vol 409 (2) ◽  
pp. 407-416 ◽  
Author(s):  
Margaret E. Graham ◽  
Mark T. W. Handley ◽  
Jeff W. Barclay ◽  
Leo F. Ciufo ◽  
Stephanie L. Barrow ◽  
...  

Munc18-1 plays a crucial role in regulated exocytosis in neurons and neuroendocrine cells through modulation of vesicle docking and membrane fusion. The molecular basis for Munc18 function is still unclear, as are the links with Rabs and SNARE [SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) receptor] proteins that are also required. Munc18-1 can bind to SNAREs through at least three modes of interaction, including binding to the closed conformation of syntaxin 1. Using a gain-of-function mutant of Munc18-1 (E466K), which is based on a mutation in the related yeast protein Sly1p, we have identified a direct interaction of Munc18-1 with Rab3A, which is increased by the mutation. Expression of Munc18-1 with the E466K mutation increased exocytosis in adrenal chromaffin cells and PC12 cells (pheochromocytoma cells) and was found to increase the density of secretory granules at the periphery of PC12 cells, suggesting a stimulatory effect on granule recruitment through docking or tethering. Both the increase in exocytosis and changes in granule distribution appear to require Munc18-1 E466K binding to the closed form of syntaxin 1, suggesting a role for this interaction in bridging Rab- and SNARE-mediated events in exocytosis.

e-Neuroforum ◽  
2017 ◽  
Vol 23 (4) ◽  
Author(s):  
Jens Rettig ◽  
David R. Stevens

AbstractThe release of neurotransmitters at synapses belongs to the most important processes in the central nervous system. In the last decades much has been learned about the molecular mechanisms which form the basis for this fundamental process. Highly regulated exocytosis, based on the SNARE (soluble N-ethylmaleimide-sensitive attachment protein receptor) complex and its regulatory molecules is the signature specialization of the nervous system and is shared by neurons and neuroendocrine cells. Cells of the immune system use a similar mechanism to release cytotoxic materials from secretory granules at contacts with virally or bacterially infected cells or cancer cells, in order to remove these threats. These contact zones have been termed immunological synapses in reference to the highly specific targeted exocytosis of effector molecules. Recent findings indicate that mutations in SNARE or SNARE-interacting proteins are the basis of a number of devastating immunological diseases. While SNARE complexes are ubiquitous and mediate a wide variety of membrane fusion events it is surprising that in many cases the SNARE proteins involved in immunological synapses are the same molecules which mediate regulated exocytosis of transmitters and hormones in neurons and neuroendocrine cells. These similarities raise the possibility that results obtained at immunological synapses may be applicable, in particular in the area of presynaptic function, to neuronal synapses. Since immunological synapses (IS) are assembled and disassembled in about a half an hour, the use of immune cells isolated from human blood allows not only the study of the molecular mechanisms of synaptic transmission in human cells, but is particularly suited to the examination of the assembly and disassembly of these “synapses” via live imaging. In this overview we discuss areas of similarity between synapses of the nervous and immune systems and in the process will refer to results of our experiments of the last few years.


Author(s):  
Najeeb Ullah ◽  
Ezzouhra El Maaiden ◽  
Md. Sahab Uddin ◽  
Ghulam Md Ashraf

: The fusion of secretory vesicles with the plasma membrane depends on the assembly of v-SNAREs (VAMP2/synaptobrevin2) and t-SNAREs (SNAP25/syntaxin1) into the SNARE complex. Vesicles go through several upstream steps, referred to as docking and priming, to gain fusion competence. The vesicular protein synaptotagmin-1 (Syt-1) is the principal Ca2+ sensor for fusion in several central nervous system neurons and neuroendocrine cells and part of the docking complex for secretory granules. Syt-1 binds to the acceptor complex such as synaxin1, SNAP-25 on the plasma membrane to facilitate secretory vesicle docking, and upon Ca2+-influx promotes vesicle fusion. This review assesses the role of the Syt-1 protein involved in the secretory vesicle docking, priming, and fusion.


2003 ◽  
Vol 163 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Claire Desnos ◽  
Jean-Sébastien Schonn ◽  
Sébastien Huet ◽  
Viet Samuel Tran ◽  
Aziz El-Amraoui ◽  
...  

The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates melanosome binding to actin. Here we show that Rab27A and MyRIP are associated with secretory granules (SGs) in adrenal chromaffin cells and PC12 cells. Overexpression of Rab27A, GTPase-deficient Rab27A-Q78L, or MyRIP reduced secretory responses of PC12 cells. Amperometric recordings of single adrenal chromaffin cells revealed that Rab27A-Q78L and MyRIP reduced the sustained component of release. Moreover, these effects on secretion were partly suppressed by the actin-depolymerizing drug latrunculin but strengthened by jasplakinolide, which stabilizes the actin cortex. Finally, MyRIP and Rab27A-Q78L restricted the motion of SGs in the subplasmalemmal region of PC12 cells, as measured by evanescent-wave fluorescence microscopy. In contrast, the Rab27A-binding domain of MyRIP and a MyRIP construct that interacts with myosin-Va but not with actin increased the mobility of SGs. We propose that Rab27A and MyRIP link SGs to F-actin and control their motion toward release sites through the actin cortex.


2008 ◽  
Vol 19 (3) ◽  
pp. 776-784 ◽  
Author(s):  
Marcin Barszczewski ◽  
John J. Chua ◽  
Alexander Stein ◽  
Ulrike Winter ◽  
Rainer Heintzmann ◽  
...  

Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of α-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of α-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of α-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of α-SNAP potently inhibits Ca2+-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an α-SNAP mutant defective in NSF activation is used. We conclude that α-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for α-SNAP in the SNARE cycle that drives exocytotic membrane fusion.


1999 ◽  
Vol 341 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Nathalie CHARVIN ◽  
Geoff WILLIAMS ◽  
Robert D. BURGOYNE

Doc2 is a C2-domain-containing protein that is highly expressed in the nervous system and has a constitutively expressed isoform. It has been implicated as a potential Ca2+ sensor in regulated exocytosis, and has been suggested to be associated with synaptic vesicles. To examine whether Doc2 is associated with synaptic-like microvesicles (SLMVs) or dense-core granules in neuroendocrine cells, we examined the distribution of Doc2 in subcellular fractionation of chromaffin cells of the adrenal medulla and in PC12 cells. Doc2 did not co-distribute with SLMVs from either cell type, but did appear to co-distribute with dense-core granules from PC12 cells. In contrast, it was not associated with the dense-core granules during subcellular fractionation of the adrenal medulla, and nor did it appear to be associated with endosomes, cis-Golgi or the trans-Golgi network. In contrast, Doc2 co-distributed under all conditions with a mitochondrial marker. We conclude that Doc2 is not a general component of regulated secretory vesicles, but may instead be associated with mitochondria.


2016 ◽  
Vol 27 (4) ◽  
pp. 654-668 ◽  
Author(s):  
Greg Kabachinski ◽  
D. Michelle Kielar-Grevstad ◽  
Xingmin Zhang ◽  
Declan J. James ◽  
Thomas F. J. Martin

The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.


1996 ◽  
Vol 132 (4) ◽  
pp. 523-536 ◽  
Author(s):  
A S Dittie ◽  
N Hajibagheri ◽  
S A Tooze

Immature secretory granules (ISGs) in endocrine and neuroendocrine cells have been shown by morphological techniques to be partially clathrin coated (Orci, L., M. Ravazzola, M. Amherdt, D. Lonvard, A. Perrelet. 1985a. Proc. Natl. Acad. Sci. USA. 82:5385-5389; Tooze, J., and S. A. Tooze. 1986. J. Cell Biol. 103:839-850). The function, and composition, of this clathrin coat has remained an enigma. Here we demonstrate using three independent techniques that immature secretory granules isolated from the rat neuroendocrine cell line PC12 have clathrin coat components associated with their membrane. To study the nature of the coat association we have developed an assay whereby the binding of the AP-1 subunit gamma-adaptin to ISGs was reconstituted by addition of rat or bovine brain cytosol. The amount of gamma-adaptin bound to the ISGs was ATP independent and was increased fourfold by the addition of GTPgammaS. The level of exogenous gamma-adaptin recruited to the ISG was similar to the level of gamma-adaptin present on the ISG after isolation. Addition of myristoylated ARF1 peptide stimulated binding. Reconstitution of the assay using AP-1 adaptor complex and recombinant ARF1 provided further evidence that ARF is involved in gamma-adaptin binding to ISGs; BFA inhibited this binding. Trypsin treatment and Trisstripping of the ISGs suggest that additional soluble and membrane-associated components are required for gamma-adaptin binding.


1998 ◽  
Vol 330 (3) ◽  
pp. 1399-1404 ◽  
Author(s):  
E. Aristea POULI ◽  
Nedim KARAGENC ◽  
Christina WASMEIER ◽  
C. John HUTTON ◽  
Nick BRIGHT ◽  
...  

Microdomains of high Ca2+ concentration ([Ca2+]) may be critical to the control of intracellular processes such as secretion and metabolism without compromising other cell functions. To explore changes in [Ca2+] in the outer mantle (< 30 nm deep) that surrounds the surface of dense-core secretory granules, we have designed a recombinant chimaera between the granule protein phogrin and aequorin. When expressed in populations of insulin-secreting MIN6 or phaeochromocytoma PC12 cells, the chimaera was targeted to secretory granules as expected. The recombinant protein reported a similar [Ca2+] at the granule surface to that in the bulk cytosol, measured with untargeted aequorin. This was the case both at rest ([Ca2+] = 80-120 nM) and after stimulation with agents that provoke Ca2+ entry or Ca2+ mobilization from intracellular pools, and during activated secretion. Thus depolarization of MIN6 cell populations with high K+ increased [Ca2+] both in the bulk cytosol and close to the granules to approx. 4 μM, with near-identical kinetics of increase and recovery. Similarly, stimulation of PC12 cells with ATP provoked an increase in [Ca2+] in either domain to 1.3 μM. These data argue that, in MIN6 and PC12 neuroendocrine cells (i) significant mobilization of Ca2+ from most secretory granules probably does not occur during activated Ca2+ influx or mobilization of internal Ca2+ stores, and (ii) agonist-stimulated Ca2+-dependent secretion can occur without development of a large gradient of [Ca2+] between the surface of most secretory vesicles and the rest of the cytosol.


2002 ◽  
Vol 115 (11) ◽  
pp. 2399-2412 ◽  
Author(s):  
Bethe A. Scalettar ◽  
Patrizia Rosa ◽  
Elena Taverna ◽  
Maura Francolini ◽  
Takashi Tsuboi ◽  
...  

Neuronal calcium sensor-1 (NCS-1) and its non-mammalian homologue,frequenin, have been implicated in a spectrum of cellular processes, including regulation of stimulated exocytosis of synaptic vesicles and secretory granules (SGs) in neurons and neuroendocrine cells and regulation of phosphatidylinositol 4-kinase beta activity in yeast. However, apart from these intriguing putative functions, NCS-1 and frequenin are relatively poorly understood. Here, the distribution, dynamics and function of NCS-1 were studied using PC12 cells that stably express NCS-1-EYFP (NCS-1 fused to enhanced yellow fluorescent protein) or that stably overexpress NCS-1. Fluorescence and electron microscopies show that NCS-1-EYFP is absent from SGs but is present on small clear organelles, some of which are just below the plasma membrane. Total internal reflection fluorescence microscopy shows that NCS-1-EYFP is associated with synaptic-like microvesicles (SLMVs) in growth cones. Overexpression studies show that NCS-1 enhances exocytosis of synaptotagmin-labeled regulated secretory organelles (RSOs) under basal conditions and during stimulation by UTP. Significantly, these studies implicate NCS-1 in the enhancement of both basal and stimulated phosphoinositide-dependent exocytosis of RSOs in PC12 cells, and they show that NCS-1 is distributed strategically to interact with putative targets on the plasma membrane and on SLMVs. These studies also reveal that SLMVs undergo both fast directed motion and highly hindered diffusive motion in growth cones, suggesting that cytoskeletal constituents can both facilitate and hinder SLMV motion. These results also reveal interesting similarities and differences between transport organelles in differentiated neuroendocrine cells and neurons.


2008 ◽  
Vol 131 (4) ◽  
pp. 307-323 ◽  
Author(s):  
Joseph G. Duman ◽  
Liangyi Chen ◽  
Bertil Hille

Many studies of Ca2+ signaling use PC12 cells, yet the balance of Ca2+ clearance mechanisms in these cells is unknown. We used pharmacological inhibition of Ca2+ transporters to characterize Ca2+ clearance after depolarizations in both undifferentiated and nerve growth factor-differentiated PC12 cells. Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA), plasma membrane Ca2+ ATPase (PMCA), and Na+/Ca2+ exchanger (NCX) account for almost all Ca2+ clearance in both cell states, with NCX and PMCA making the greatest contributions. Any contribution of mitochondrial uniporters is small. The ATP pool in differentiated cells was much more labile than that of undifferentiated cells in the presence of agents that dissipated mitochondrial proton gradients. Differentiated PC12 cells have a small component of Ca2+ clearance possessing pharmacological characteristics consistent with secretory pathway Ca2+ ATPase (SPCA), potentially residing on Golgi and/or secretory granules. Undifferentiated and differentiated cells are similar in overall Ca2+ transport and in the small transport due to SERCA, but they differ in the fraction of transport by PMCA and NCX. Transport in neurites of differentiated PC12 cells was qualitatively similar to that in the somata, except that the ER stores in neurites sometimes released Ca2+ instead of clearing it after depolarization. We formulated a mathematical model to simulate the observed Ca2+ clearance and to describe the differences between these undifferentiated and NGF-differentiated states quantitatively. The model required a value for the endogenous Ca2+ binding ratio of PC12 cell cytoplasm, which we measured to be 268 ± 85. Our results indicate that Ca2+ transport in undifferentiated PC12 cells is quite unlike transport in adrenal chromaffin cells, for which they often are considered models. Transport in both cell states more closely resembles that of sympathetic neurons, for which differentiated PC12 cells often are considered models. Comparison with other cell types shows that different cells emphasize different Ca2+ transport mechanisms.


Sign in / Sign up

Export Citation Format

Share Document