scholarly journals An essential role for the Glut1 PDZ-binding motif in growth factor regulation of Glut1 degradation and trafficking

2009 ◽  
Vol 418 (2) ◽  
pp. 345-367 ◽  
Author(s):  
Heather L. Wieman ◽  
Sarah R. Horn ◽  
Sarah R. Jacobs ◽  
Brian J. Altman ◽  
Sally Kornbluth ◽  
...  

Cell surface localization of the Glut (glucose transporter), Glut1, is a cytokine-controlled process essential to support the metabolism and survival of haemopoietic cells. Molecular mechanisms that regulate Glut1 trafficking, however, are not certain. In the present study, we show that a C-terminal PDZ-binding motif in Glut1 is critical to promote maximal cytokine-stimulated Glut1 cell surface localization and prevent Glut1 lysosomal degradation in the absence of growth factor. Disruption of this PDZ-binding sequence through deletion or point mutation sharply decreased surface Glut1 levels and led to rapid targeting of internalized Glut1 to lysosomes for proteolysis, particularly in growth factor-deprived cells. The PDZ-domain protein, GIPC (Gα-interacting protein-interacting protein, C-terminus), bound to Glut1 in part via the Glut1 C-terminal PDZ-binding motif, and we found that GIPC deficiency decreased Glut1 surface levels and glucose uptake. Unlike the Glut1 degradation observed on mutation of the Glut1 PDZ-binding domain, however, GIPC deficiency resulted in accumulation of intracellular Glut1 in a pool distinct from the recycling pathway of the TfR (transferrin receptor). Blockade of Glut1 lysosomal targeting after growth factor withdrawal also led to intracellular accumulation of Glut1, a portion of which could be rapidly restored to the cell surface after growth factor stimulation. These results indicate that the C-terminal PDZ-binding motif of Glut1 plays a key role in growth factor regulation of glucose uptake by both allowing GIPC to promote Glut1 trafficking to the cell surface and protecting intracellular Glut1 from lysosomal degradation after growth factor withdrawal, thus allowing the potential for a rapid return of intracellular Glut1 to the cell surface on restimulation.

2018 ◽  
Vol 46 (5) ◽  
pp. 1985-1998 ◽  
Author(s):  
Tomoyuki Nishizaki

Background/Aims: Phosphatidylethanolamine, a component of the plasma membrane, regulates diverse cellular processes. The present study investigated the role of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in the trafficking of the glucose transporter GLUT4 and the glucose homeostasis. Methods: Monitoring of GLUT4 trafficking, GLUT4 internalization assay, and glucose uptake assay were carried out using differentiated 3T3-L1-GLUT4myc adipocytes. Akt1/2 and PKC isozymes were knocked-down by transfecting each siRNA. Cell-free PKC assay and in situ PKCα assay with a FRET probe were carried out. Oral glucose tolerance test (OGTT) was performed using BKS.Cg-+Lepdb/+Lebdb/Jcl mice, an animal model of type 2 diabetes mellitus (DM). Results: DOPE increased cell surface localization of the glucose transporter GLUT4 in differentiated 3T3-L1-GLUT4myc adipocytes, regardless of Akt activation. Likewise, PKCα deficiency increased cell surface localization of GLUT4, that occludes the effect of DOPE. DOPE clearly suppressed phorbol 12-myristate 13-acetate-induced PKCα activation in the cell-free and in situ PKC assay. DOPE and PKCα deficiency cancelled endocytic internalization of GLUT4 localized on the plasma membrane after insulin stimulation. DOPE significantly enhanced glucose uptake into cells. A similar effect was obtained by knocking-down PKCα, that occludes the effect of DOPE. In OGTT, oral administration with DOPE effectively restricted an increase in the blood glucose levels after glucose loading in type 2 DM model mice. Conclusion: The results of the present study show that DOPE retains cell surface GLUT4 by suppressing PKCα-driven endocytic internalization of GLUT4, to enhance glucose uptake into cells and restrict an increase in the blood glucose levels after glucose loading in type 2 DM.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna L. Epp ◽  
Sarah N. Ebert ◽  
Juan C. Sanchez-Arias ◽  
Leigh E. Wicki-Stordeur ◽  
Andrew K. J. Boyce ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Aurelia Stangl ◽  
Paul R. Elliott ◽  
Adan Pinto-Fernandez ◽  
Sarah Bonham ◽  
Luke Harrison ◽  
...  

Abstract OTULIN (OTU Deubiquitinase With Linear Linkage Specificity) specifically hydrolyzes methionine1 (Met1)-linked ubiquitin chains conjugated by LUBAC (linear ubiquitin chain assembly complex). Here we report on the mass spectrometric identification of the OTULIN interactor SNX27 (sorting nexin 27), an adaptor of the endosomal retromer complex responsible for protein recycling to the cell surface. The C-terminal PDZ-binding motif (PDZbm) in OTULIN associates with the cargo-binding site in the PDZ domain of SNX27. By solving the structure of the OTU domain in complex with the PDZ domain, we demonstrate that a second interface contributes to the selective, high affinity interaction of OTULIN and SNX27. SNX27 does not affect OTULIN catalytic activity, OTULIN-LUBAC binding or Met1-linked ubiquitin chain homeostasis. However, via association, OTULIN antagonizes SNX27-dependent cargo loading, binding of SNX27 to the VPS26A-retromer subunit and endosome-to-plasma membrane trafficking. Thus, we define an additional, non-catalytic function of OTULIN in the regulation of SNX27-retromer assembly and recycling to the cell surface.


1995 ◽  
Vol 270 (48) ◽  
pp. 28962-28969 ◽  
Author(s):  
Véronique Beldent ◽  
Annie Michaud ◽  
Christophe Bonnefoy ◽  
Marie-Thérèse Chauvet ◽  
Pierre Corvol

Sign in / Sign up

Export Citation Format

Share Document