Phosphatidylinositol metabolism and membrane fusion

2009 ◽  
Vol 418 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Dominic Poccia ◽  
Banafshé Larijani

Membrane fusion underlies many cellular events, including secretion, exocytosis, endocytosis, organelle reconstitution, transport from endoplasmic reticulum to Golgi and nuclear envelope formation. A large number of investigations into membrane fusion indicate various roles for individual members of the phosphoinositide class of membrane lipids. We first review the phosphoinositides as membrane recognition sites and their regulatory functions in membrane fusion. We then consider how modulation of phosphoinositides and their products may affect the structure and dynamics of natural membranes facilitating fusion. These diverse roles underscore the importance of these phospholipids in the fusion of biological membranes.

2020 ◽  
Author(s):  
Julie Jacquemyn ◽  
Joyce Foroozandeh ◽  
Katlijn Vints ◽  
Jef Swerts ◽  
Patrik Verstreken ◽  
...  

AbstractTorsin ATPases of the endoplasmic reticulum (ER) and nuclear envelope (NE) lumen inhibit Lipin-mediated phosphatidate (PA) to diacylglycerol (DAG) conversion by an unknown mechanism. This excess PA metabolism is implicated in TOR1A/TorsinA diseases, but it is unclear whether it explains why Torsin concomitantly affects nuclear structure, lipid droplets (LD), organelle and cell growth. Here a fly miniscreen identified that Torsins affect these events via the NEP1R1-CTDNEP1 phosphatase complex. Further, Torsin homo-oligomerization rather than ATPase activity was key to function. NEP1R1-CTDNEP1 activates Lipin by dephosphorylation. We show that Torsin prevents CTDNEP1 from accumulating in the NE and excludes Lipin from the nucleus. Moreover, this repression of nuclear PA metabolism is required for interphase nuclear pore biogenesis. We conclude that Torsin is an upstream regulator of the NEP1R1-CTDNEP1/ Lipin pathway. This connects the ER/NE lumen with PA metabolism, and affects numerous cellular events including it has a previously unrecognized role in nuclear pore biogenesis.HighlightsNuclear envelope PA-DAG-TAG synthesis is independently regulated by Torsin and Torip/LAP1Torsin removes CTDNEP1 from the nuclear envelope and excludes Lipin from the nucleusExcess nuclear envelope NEP1R1-CTDNEP1/ Lipin activity impairs multiple aspects of NPC biogenesisNEP1R1-CTDNEP1/ Lipin inhibition prevents cellular defects associated with TOR1A and TOR1AIP1 / LAP1 disease


2008 ◽  
Vol 182 (5) ◽  
pp. 911-924 ◽  
Author(s):  
Daniel J. Anderson ◽  
Martin W. Hetzer

During mitosis in metazoans, segregated chromosomes become enclosed by the nuclear envelope (NE), a double membrane that is continuous with the endoplasmic reticulum (ER). Recent in vitro data suggest that NE formation occurs by chromatin-mediated reorganization of the tubular ER; however, the basic principles of such a membrane-reshaping process remain uncharacterized. Here, we present a quantitative analysis of nuclear membrane assembly in mammalian cells using time-lapse microscopy. From the initial recruitment of ER tubules to chromatin, the formation of a membrane-enclosed, transport-competent nucleus occurs within ∼12 min. Overexpression of the ER tubule-forming proteins reticulon 3, reticulon 4, and DP1 inhibits NE formation and nuclear expansion, whereas their knockdown accelerates nuclear assembly. This suggests that the transition from membrane tubules to sheets is rate-limiting for nuclear assembly. Our results provide evidence that ER-shaping proteins are directly involved in the reconstruction of the nuclear compartment and that morphological restructuring of the ER is the principal mechanism of NE formation in vivo.


2019 ◽  
Vol 167 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Osamu Udagawa ◽  
Naotada Ishihara

Abstract Mitochondria play many critical roles in cells, not only by supplying energy, but also by supplying metabolites, buffering Ca2+ levels and regulating apoptosis. During oocyte maturation and subsequent embryo development, mitochondria change their morphology by membrane fusion and fission, and coordinately undergo multiple cellular events with the endoplasmic reticulum (ER) closely apposed. Mitochondrial fusion and fission, known as mitochondrial dynamics, are regulated by family members of dynamin GTPases. Oocytes in animal models with these regulators artificially altered exhibit morphological abnormalities in nearby mitochondria and at the ER interface that are reminiscent of major cytoplasmic dysmorphisms in human assisted reproductive technology, in which a portion of mature oocytes retrieved from patients contain cytoplasmic dysmorphisms associated with mitochondria and ER abnormal morphologies. Understanding organelle morpho-homeostasis in oocytes obtained from animal models will contribute to the development of novel methods for determining oocyte health and for how to deal with dysmorphic oocytes.


2015 ◽  
Vol 48 (3) ◽  
pp. 381-389
Author(s):  
J. A. Tarkowska

Dividing endosperm cells of <i>Haemanthus katherinae</i> Bak., treated with 0.025 per cent aqueous solution of a mixture of glycosides from <i>Nerium oleander</i> were examined in vitro in the light and in the electron microscope. A high hypertrophy of endoplasmic reticulum was noted. In prometaphase and metaphase, after treatment for about l h 45 min there appeared very narrow cisternae forming various configurations, frequently in parallel and concentric arrangement. On the membranes of these cisternae there are formed dark areas interpreted as pores characteristic for nuclear envelopes, this indicating that at least part of the two-membrane structures transforms to the nuclear envelope. The formation of the new nuclear envelope pre-maturely and apparently in excess is discussed.


2012 ◽  
Vol 393 (11) ◽  
pp. 1231-1245 ◽  
Author(s):  
Jörg Nikolaus ◽  
Andreas Herrmann

Abstract Membrane fusion is ubiquitous in life. Fusion of biological membranes is mediated by specialized fusion proteins anchored to the bilayers destined to fuse. Here we describe these proteins as being instrumental in viral, intracellular and developmental fusion. Next, we review experimental and theoretical evidence that points to fusion in the different systems as following a common ‘fusion through hemifusion’ pathway. We also focus on the structure and dynamics of the transmembrane segment that anchors the fusion proteins to the bilayer, and its role in driving fusion. In particular, we highlight the influence of this single segment on the surrounding membrane lipids and on the overall shape of the membrane along the way to fusion.


Development ◽  
2002 ◽  
Vol 129 (1) ◽  
pp. 143-154
Author(s):  
Tzu-Kang Sang ◽  
Donald F. Ready

Starting with a mutation impacting photoreceptor morphogenesis, we identify here a Drosophila gene, eyes closed (eyc), as a fly homolog of p47, a protein co-factor of the p97 ATPase implicated in membrane fusion. Temporal misexpression of Eyc during rhabdomere extension early in pupal life results in inappropriate retention of normally transient adhesions between developing rhabdomeres. Later Eyc misexpression results in endoplasmic reticulum proliferation and inhibits rhodopsin transport to the developing photosensitive membrane. Loss of Eyc function results in a lethal failure of nuclear envelope assembly in early zygotic divisions. Phenotypes resulting from eyc mutations provide the first in vivo evidence for a role for p47 in membrane biogenesis.Movies available on-line


Sign in / Sign up

Export Citation Format

Share Document