structure lipid
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Ashok K. Datusalia ◽  
Gurpreet Singh ◽  
Nikita Yadav ◽  
Sachin Gaun ◽  
Moumita Manik ◽  
...  

: Alzheimer’s disease (AD) is one of the most common neurodegenerative disease, which affect millions of people worldwide. Accumulation of amyloid-β plaques and hyperphosphorylated neurofibrillary tangles are the key mechanisms involved in the etiopathogenesis of AD, characterized by memory loss and behavioural changes. Effective therapies targeting AD pathogenesis are limited, making it the largest unmet clinical need. Unfortunately, the available drugs provide symptomatic relief and primary care, with no substantial impact on the disease pathology. However, in recent years researchers are working hard on several potential therapeutic targets to combat disease pathogenesis and few drugs have also reached clinical trials. In addition, drugs are being repurposed both in the preclinical and clinical studies for the treatment of AD. For instance, montelukast is most commonly used leukotriene receptor antagonist, for treating asthma and seasonal allergy. Its leukotriene antagonistic action can also be beneficial for the reduction of detrimental effects of leukotriene against neuro-inflammation, an hallmark feature of AD. The available marketed formulations of montelukast present challenges such as poor bioavailability and reduced uptake, reflecting the lack of effectiveness of its desired action in the CNS. While on the other side targeted drug delivery is a satisfactory approach to surpass the challenges associated with the therapeutic agents. This review will discuss the enhancement of montelukast treatment efficacy and its access to CNS, by using new approaches like nano-formulation, nasal gel, solid lipid formulation, nano-structure lipid carrier (NSLC), highlighting lessons learned to target AD pathologies and hurdles that persist.


2021 ◽  
Author(s):  
Abraham Kayal

The precorneal tear film is a thin layer, about 2–5.5 μm thick, which overlays the corneal and conjunctival epithelium. It functions to lubricate and protect the corneal and eyelid interface from environmental and immunological factors as well as provide an optical medium. The tear film is depicted as a three-layered structure: lipid, aqueous, and mucous layers. Within each layer possesses a different composition which dictates its function. In common between the three layers are their homeostatic process of evaporation and drainage. Any dysfunction in either of the layers can result in Dry Eye Syndrome (DES). The composition, regulation, and pathology of tear film will be discussed in this chapter.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1364
Author(s):  
Nicola Mosca ◽  
Sara Petrillo ◽  
Sara Bortolani ◽  
Mauro Monforte ◽  
Enzo Ricci ◽  
...  

In recent years, growing evidence has suggested a prominent role of oxidative stress in the pathophysiology of several early- and adult-onset muscle disorders, although effective antioxidant treatments are still lacking. Oxidative stress causes cell damage by affecting protein function, membrane structure, lipid metabolism, and DNA integrity, thus interfering with skeletal muscle homeostasis and functionality. Some features related to oxidative stress, such as chronic inflammation, defective regeneration, and mitochondrial damage are shared among most muscular dystrophies, and Nrf2 has been shown to be a central player in antagonizing redox imbalance in several of these disorders. However, the exact mechanisms leading to overproduction of reactive oxygen species and deregulation in the cellular antioxidants system seem to be, to a large extent, disease-specific, and the clarification of these mechanisms in vivo in humans is the cornerstone for the development of targeted antioxidant therapies, which will require testing in appropriately designed clinical trials.


2020 ◽  
Vol 27 (12) ◽  
pp. 1194-1201 ◽  
Author(s):  
Shintaro Maeda ◽  
Hayashi Yamamoto ◽  
Lisa N. Kinch ◽  
Christina M. Garza ◽  
Satoru Takahashi ◽  
...  

2020 ◽  
Author(s):  
Garima Rani ◽  
Kenichi Kuroda ◽  
Satyavani Vemparala

Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows that the random ternary polymers can penetrate deep into the membrane interior and partitioning of even a single polymer has a pronounced effect on the membrane structure. Lipid reorganization, on polymer binding, shows a strong affinity of the ternary polymer for anionic POPG lipids and the same is compared with the control case of binary polymers (only cationic and hydrophobic groups). While binary polymers exhibit strong propensity of acquired amphiphilic conformations upon membrane insertion, our results strongly suggest that such amphiphilic conformations are absent in the case of random ternary polymers. The ternary polymers adopt a more folded conformation, staying aligned in the direction of the membrane normal and subsequently penetrating deeper into the membrane interior suggesting a novel membrane partitioning mechanism without amphiphilic conformations. Finally, we also examine the interactions of ternary polymer aggregates with model bacterial membranes, which show that replacing some of the hydrophobic groups by polar groups leads to weakly held ternary aggregates enabling them to undergo rapid partitioning and insertion into membrane interior. Our work thus underscores the role of inclusion of polar groups into the framework of traditional binary biomimetic antimicrobial polymers and suggests different mode of partitioning into bacterial membranes, mimicking antimicrobial mechanism of globular antimicrobial peptides like Defensin.


2020 ◽  
Vol 117 (31) ◽  
pp. 18206-18215
Author(s):  
Ahanjit Bhattacharya ◽  
Henrike Niederholtmeyer ◽  
Kira A. Podolsky ◽  
Rupak Bhattacharya ◽  
Jing-Jin Song ◽  
...  

Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.


2020 ◽  
Author(s):  
Julie Jacquemyn ◽  
Joyce Foroozandeh ◽  
Katlijn Vints ◽  
Jef Swerts ◽  
Patrik Verstreken ◽  
...  

AbstractTorsin ATPases of the endoplasmic reticulum (ER) and nuclear envelope (NE) lumen inhibit Lipin-mediated phosphatidate (PA) to diacylglycerol (DAG) conversion by an unknown mechanism. This excess PA metabolism is implicated in TOR1A/TorsinA diseases, but it is unclear whether it explains why Torsin concomitantly affects nuclear structure, lipid droplets (LD), organelle and cell growth. Here a fly miniscreen identified that Torsins affect these events via the NEP1R1-CTDNEP1 phosphatase complex. Further, Torsin homo-oligomerization rather than ATPase activity was key to function. NEP1R1-CTDNEP1 activates Lipin by dephosphorylation. We show that Torsin prevents CTDNEP1 from accumulating in the NE and excludes Lipin from the nucleus. Moreover, this repression of nuclear PA metabolism is required for interphase nuclear pore biogenesis. We conclude that Torsin is an upstream regulator of the NEP1R1-CTDNEP1/ Lipin pathway. This connects the ER/NE lumen with PA metabolism, and affects numerous cellular events including it has a previously unrecognized role in nuclear pore biogenesis.HighlightsNuclear envelope PA-DAG-TAG synthesis is independently regulated by Torsin and Torip/LAP1Torsin removes CTDNEP1 from the nuclear envelope and excludes Lipin from the nucleusExcess nuclear envelope NEP1R1-CTDNEP1/ Lipin activity impairs multiple aspects of NPC biogenesisNEP1R1-CTDNEP1/ Lipin inhibition prevents cellular defects associated with TOR1A and TOR1AIP1 / LAP1 disease


2013 ◽  
Vol 98 (1) ◽  
pp. 922-930 ◽  
Author(s):  
Tao Qiu ◽  
Xiaojing Ma ◽  
Ming Ye ◽  
Ruyue Yuan ◽  
Yanna Wu

Sign in / Sign up

Export Citation Format

Share Document