scholarly journals Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells

2011 ◽  
Vol 439 (1) ◽  
pp. 161-170 ◽  
Author(s):  
Yizhou Wang ◽  
Michael R. Blatt

Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (malate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (ICl) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect ICl, but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of ICl by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with ICl through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes.

Author(s):  
Md Tahjib-Ul-Arif ◽  
Shintaro Munemasa ◽  
Toshiyuki Nakamura ◽  
Yoshimasa Nakamura ◽  
Yoshiyuki Murata

Abstract Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zirong Ren ◽  
Bazhen Suolang ◽  
Tadashi Fujiwara ◽  
Dan Yang ◽  
Yusuke Saijo ◽  
...  

Plasma membrane proton-ATPase (PM H+-ATPase) is a primary H+ transporter that consumes ATP in vivo and is a limiting factor in the blue light-induced stomatal opening signaling pathway. It was recently reported that manipulation of PM H+-ATPase in stomatal guard cells and other tissues greatly improved leaf photosynthesis and plant growth. In this report, we review and discuss the function of PM H+-ATPase in the context of the promotion and upregulation H+-ATPase strategy, including associated principles pertaining to enhanced stomatal opening, environmental plasticity, and potential applications in crops and nanotechnology. We highlight the great potential of the promotion and upregulation H+-ATPase strategy, and explain why it may be applied in many crops in the future.


2015 ◽  
Vol 25 (7) ◽  
pp. 928-935 ◽  
Author(s):  
Christof Lind ◽  
Ingo Dreyer ◽  
Enrique J. López-Sanjurjo ◽  
Katharina von Meyer ◽  
Kimitsune Ishizaki ◽  
...  

2011 ◽  
Vol 52 (7) ◽  
pp. 1238-1248 ◽  
Author(s):  
Maki Hayashi ◽  
Shin-ichiro Inoue ◽  
Koji Takahashi ◽  
Toshinori Kinoshita

2021 ◽  
Author(s):  
Li Qin ◽  
Ling-hui Tang ◽  
Jia-shu Xu ◽  
Xian-hui Zhang ◽  
Yun Zhu ◽  
...  

SUMMARYThe rapid (R)-type anion channel plays a central role in controlling stomatal closure in plant guard cells, thus regulating the exchange of water and photosynthetic gas (CO2) in response to environmental stimuli. The activity of the R- type anion channel is regulated by malate. However, the molecular basis of the R-type anion channel activity remains elusive. Here, we describe the first cryo-EM structure of the R-type anion channel QUAC1 at 3.5 Å resolution in the presence of malate. The structure reveals that the QUAC1 is a symmetrical dimer, forming a single electropositive T-shaped pore for passing anions across the membrane. The transmembrane and cytoplasmic domains are assembled into a twisted bi-layer architecture, with the associated dimeric interfaces nearly perpendicular. Our structural and functional analyses reveal that QUAC1 functions as an inward rectifying anion channel and suggests a mechanism for malate-mediated channel activation. Altogether, our study uncovers the molecular basis for a novel class of anion channels and provides insights into the gating and modulation of the R-type anion channel.


FEBS Letters ◽  
2001 ◽  
Vol 491 (1-2) ◽  
pp. 99-103 ◽  
Author(s):  
David W.A. Hamilton ◽  
Adrian Hills ◽  
Michael R. Blatt

1989 ◽  
Vol 67 (12) ◽  
pp. 2994-3004 ◽  
Author(s):  
Patrick J. Walsh ◽  
C. Louise Milligan

This review discusses the mechanisms by which animal cells regulate intracellular pH (pHi), the variations in pHi encountered in vivo, and the impact that variations in pHi (and other acid–base variables) have on metabolism. Cells regulate pHi by a combination of (i) physicochemical buffering by intracellular components; (ii) transport of acids and bases across the plasma membrane; and (iii) production and consumption of acids and bases by metabolism. Ionic transport is by far the best studied of these three mechanisms, and several specific plasma membrane exchangers (e.g., Na+–H+ exchange) are important regulators of pHi The precise quantitative contribution of the other two mechanisms to pHi regulation awaits further study. Intracellular pH variations in vivo can be substantial (i.e., up to 1 unit in some cases) and can lead to marked changes in metabolism. Furthermore, changes in carbon dioxide tension and bicarbonate concentration can also affect metabolism. Catecholamines appear to be important regulatory signals in metabolic compensation for acid–base perturbations, but in some cases acid–base disturbances may produce adaptive metabolic changes directly.


The plant growth regulator abscisic acid triggers closing of stomata in the leaf epidermis in response to water stress. Recent tracer flux studies, patch-clamp studies, fluorometric Ca 2+ measurements and microelectrode experiments have provided insight into primary transduction mechanisms by which abscisic acid causes stomatal closing. Data show that abscisic acid activates non-selective Ca 2+ permeable ion channels in the plasma membrane of guard cells. The resulting elevation in the free Ca 2+ concentration in the cytosol of guard cells, and the resulting membrane depolarization as well as other unidentified Ca 2+ independent mechanisms are suggested to contribute to activation of voltage- and second messenger-dependent anion channels and outward rectifying K + channels. Recent data suggest the involvement of two types of anion channels in the regulation of stomatal movements, which provide highly distinct mechanisms for anion efflux and depolarization. A novely characterized ‘S-type’ anion channel is likely to provide a key mechanism for long-term depolarization and sustained anion efflux during closing of stomata. Patch-clamp studies have revealed the presence of a network of K + , anion and non-selective Ca 2+ -permeable channels in the plasma membrane of a higher plant cell. The integrated control of these guard cell ion channels by abscisic acid can provide control over K + and anion efflux required for stomatal closing.


Sign in / Sign up

Export Citation Format

Share Document