Identification and characterization of a kunzeaol synthase from Thapsia garganica: implications for the biosynthesis of the pharmaceutical thapsigargin

2012 ◽  
Vol 448 (2) ◽  
pp. 261-271 ◽  
Author(s):  
Benjamin Pickel ◽  
Damian P. Drew ◽  
Tom Manczak ◽  
Corinna Weitzel ◽  
Henrik T. Simonsen ◽  
...  

Thapsigargin is a major terpenoid constituent of Thapsia garganica root. Owing to its potent antagonistic effect on the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, thapsigargin has been widely used to study Ca2+ signalling and is also a potential drug for prostate cancer. Despite its importance, thapsigargin biosynthesis in T. garganica remains unknown. In order to decipher thapsigargin biosynthesis, deep transcript sequencing (454 and Illumina) of the T. garganica root was performed, and two terpene synthases (TgTPS1/2) were identified. Functional characterization of their encoded enzymes in a metabolically engineered yeast revealed that TgTPS1 synthesized δ-cadinene, whereas TgTPS2 produced ten distinct terpenoids. However, cultivation of the TgTPS2-expressing yeast in pH-maintained conditions (pH 6–7) yielded one major oxygenated sesquiterpenoid, suggesting that formation of multiple terpenoids was caused by acidity. The major terpene product from TgTPS2 was identified as 6β-hydroxygermacra-1(10),4-diene (kunzeaol) by mass-fragmentation pattern, retention index, the nature of its acid-induced degradation and NMR. Also, recombinant TgTPS2 efficiently catalysed the synthesis of kunzeaol in vitro from farnesyl diphosphate with a Km of 2.6 μM and a kcat of 0.03 s−1. The present paper is the first report of a kunzeaol synthase, and a mechanism for the transformation of kunzeaol into the thapsigargin backbone is proposed.

2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Jens Göpfert ◽  
Anna-Katharina Bülow ◽  
Otmar Spring

Sesquiterpenes and sesquiterpene lactones are major natural compounds found in linear and capitate glandular trichomes of sunflower, Helianthus annuus L. In addition to two recently identified germacrene A synthases HaGAS1 and HaGAS2, found in capitate trichome gland cells, reverse transcription-PCR experiments have now allowed identification of a third enzyme of this type, HaGAS3. Its cDNA sequence was established and its functional characterization as a germacrene A synthase was achieved through in vitro expression in engineered yeast, and by GC-MS experiments. PCR and RT-PCR experiments with cDNA from different plant organs revealed that the new enzyme is expressed independently from the other two. While these latter two were expressed in plant organs bearing capitate glandular trichomes and in roots, the new enzyme occurred in plant tissues not linked to the presence of specific trichomes (for example, cotyledons), and was absent in roots. The experiments show that independently regulated pathways for the first cyclic sesquiterpene, germacrene A, are present in sunflower.


Microbiology ◽  
2011 ◽  
Vol 157 (4) ◽  
pp. 1240-1249 ◽  
Author(s):  
Bohdan Ostash ◽  
Yuriy Rebets ◽  
Maksym Myronovskyy ◽  
Olga Tsypik ◽  
Iryna Ostash ◽  
...  

Here, we report the identification and functional characterization of the Streptomyces globisporus 1912 gene lndYR, which encodes a GntR-like regulator of the YtrA subfamily. Disruption of lndYR arrested sporulation and antibiotic production in S. globisporus. The results of in vivo and in vitro studies revealed that the ABC transporter genes lndW–lndW2 are targets of LndYR repressive action. In Streptomyces coelicolor M145, lndYR overexpression caused a significant increase in the amount of extracellular actinorhodin. We suggest that lndYR controls the transcription of transport system genes in response to an as-yet-unidentified signal. Features that distinguish lndYR-based regulation from other known regulators are discussed.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


2021 ◽  
Vol 7 (3) ◽  
pp. 194
Author(s):  
Carmen Gómez-Lama Cabanás ◽  
Antonio J. Fernández-González ◽  
Martina Cardoni ◽  
Antonio Valverde-Corredor ◽  
Javier López-Cepero ◽  
...  

This study aimed to disentangle the structure, composition, and co-occurrence relationships of the banana (cv. Dwarf Cavendish) root endophytome comparing two phenological plant stages: mother plants and suckers. Moreover, a collection of culturable root endophytes (>1000) was also generated from Canary Islands. In vitro antagonism assays against Fusarium oxysporum f.sp. cubense (Foc) races STR4 and TR4 enabled the identification and characterization of potential biocontrol agents (BCA). Eventually, three of them were selected and evaluated against Fusarium wilt of banana (FWB) together with the well-known BCA Pseudomonas simiae PICF7 under controlled conditions. Culturable and non-culturable (high-throughput sequencing) approaches provided concordant information and showed low microbial diversity within the banana root endosphere. Pseudomonas appeared as the dominant genus and seemed to play an important role in the banana root endophytic microbiome according to co-occurrence networks. Fungal communities were dominated by the genera Ophioceras, Cyphellophora, Plecosphaerella, and Fusarium. Overall, significant differences were found between mother plants and suckers, suggesting that the phenological stage determines the recruitment and organization of the endophytic microbiome. While selected native banana endophytes showed clear antagonism against Foc strains, their biocontrol performance against FWB did not improve the outcome observed for a non-indigenous reference BCA (strain PICF7).


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 645
Author(s):  
Sergio Montserrat-de la Paz ◽  
Alicia Martinez-Lopez ◽  
Alvaro Villanueva-Lazo ◽  
Justo Pedroche ◽  
Francisco Millan ◽  
...  

Kiwicha (Amaranthus caudatus) is considered one of the few multipurpose pseudocereals for its potential use not only as a source of nutrients and fiber but also for its bioactive compounds. In recent years, antioxidant peptides are commonly used as functional ingredient of food. Herein, a kiwicha protein isolate (KPI), obtained from kiwicha defatted flour (KDF), was hydrolyzed by Bioprotease LA 660, a food-grade endoprotease, under specific conditions. The resulting kiwicha protein hydrolysates (KPHs) were chemically characterized and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments owing to their measure of capacity to sequester DPPH free radical and reducing power. KPHs showed higher digestibility and antioxidant capacity than intact proteins into KPI. Therefore, the results shown in this study indicate that KPHs could serve as an adequate source of antioxidant peptides, representing an effective alternative to the generation of functional food.


2002 ◽  
Vol 22 (2) ◽  
pp. 536-546 ◽  
Author(s):  
Qin Feng ◽  
Ru Cao ◽  
Li Xia ◽  
Hediye Erdjument-Bromage ◽  
Paul Tempst ◽  
...  

ABSTRACT Methylation of cytosine at CpG dinucleotides is a common feature of many higher eukaryotic genomes. A major biological consequence of DNA methylation is gene silencing. Increasing evidence indicates that recruitment of histone deacetylase complexes by methyl-CpG-binding proteins is a major mechanism of methylated DNA silencing. We have previously reported that the MeCP1 protein complex represses transcription through preferential binding, remodeling, and deacetylation of methylated nucleosomes. To understand the molecular mechanism of the functioning of the MeCP1 complex, the individual components of the MeCP1 complex need to be characterized. In this paper, we report the identification and functional characterization of the p66 and p68 components of the MeCP1 complex. We provide evidence that the two components are different forms of the same zinc finger-containing protein. Analysis of the p66 homologs from different organisms revealed two highly conserved regions, CR1 and CR2. While CR1 is involved in the association of p66 with other MeCP1 components, CR2 plays an important role in targeting p66 and MBD3 to specific loci. Thus, our study not only completes the identification of the MeCP1 components but also reveals the potential function of p66 in MeCP1 complex targeting. The identification and characterization of all the MeCP1 components set the stage for reconstitution of the MeCP1 complex.


Sign in / Sign up

Export Citation Format

Share Document