scholarly journals Actomyosin interactions with insulin-storage granules in vitro

1982 ◽  
Vol 206 (1) ◽  
pp. 157-160 ◽  
Author(s):  
S L Howell ◽  
M Tyhurst

Interactions between actomyosin and insulin storage granules isolated from rat islets of Langerhans have been examined in a simple system in vitro, which allows comparison of the sedimentation of the granules in the presence of absence of actomyosin in various conditions. Actomyosin altered granule-sedimentation rates in a manner consistent with the binding of the granules of actomyosin filaments. This interaction was enhanced by addition of ATP (1.5 mM) but unaltered by addition of CaCl2, by calmodulin or by calmodulin in the presence of 10 microM-CaCl2. Addition of EGTA (0.1 mM), cyclic AMP (10 microM) of cytochalasin B (10 microgram/ml) were also without effects in these conditions. Pre-incubation of granules with phospholipase c did not affect granule-actomyosin interaction. Ultrastructural studies showed close contacts between the membranes of the granules and actomyosin filaments. The results indicate the possibility that actomyosin might provide the motile force for granule translocation during the insulin secretory process.

1979 ◽  
Vol 178 (2) ◽  
pp. 367-371 ◽  
Author(s):  
S L Howell ◽  
M Tyhurst

Possible interactions between polymerized (F-) actin and insulin-storage granules from rat islets of Langerhans were examined in vitro by comparing the sedimentation of the granules in the presence of various actin concentrations. Actin in the concentration range 0.1–0.5 mg/ml produced a retardation in granule-sedimentation rates consistent with binding of the granules to the actin filaments. The interaction was increased by addition of ATP (2mM), but was decreased by CaCl2 (0.1 mM). Binding of granules to actin was unaffected by cyclic AMP or by preincubation of the granules with phospholipase C. Specificity of the interaction was confirmed by the use of depolymerized (G-) actin and of myosin to provide a solution of comparable viscosity; neither of these caused any alteration of granule sedimentation. Possible implications of this interaction of insulin-storage granules with actin for the mechanism of insulin secretion are briefly discussed.


1972 ◽  
Vol 53 (2) ◽  
pp. 290-311 ◽  
Author(s):  
J. David Castle ◽  
James D. Jamieson ◽  
George E. Palade

Intracellular transport of secretory proteins has been studied in the parotid to examine this process in an exocrine gland other than the pancreas and to explore a possible source of less degraded membranes than obtainable from the latter gland. Rabbit parotids were chosen on the basis of size (2–2.5 g per animal), ease of surgical removal, and amylase concentration. Sites of synthesis, rates of intracellular transport, and sites of packaging and storage of newly synthesized secretory proteins were determined radioautographically by using an in vitro system of dissected lobules capable of linear amino acid incorporation for 10 hr with satisfactory preservation of cellular fine structure. Adequate fixation of the tissue with minimal binding of unincorporated labeled amino acids was obtained by using 10% formaldehyde-0.175 M phosphate buffer (pH 7.2) as primary fixative. Pulse labeling with leucine-3H, followed by a chase incubation, showed that the label is initially located (chase: 1–6 min) over the rough endoplasmic reticulum (RER) and subsequently moves as a wave through the Golgi complex (chase: 16–36 min), condensing vacuoles (chase: 36–56 min), immature granules (chase: 56–116 min), and finally mature storage granules (chase: 116–356 min). Distinguishing features of the parotid transport apparatus are: low frequency of RER-Golgi transitional elements, close association of condensing vacuoles with the exit side of Golgi stacks, and recognizable immature secretory granules. Intracelular processing of secretory proteins is similar to that already found in the pancreas, except that the rate is slower and the storage is more prolonged.


Author(s):  
Conly L. Rieder ◽  
S. Bowser ◽  
R. Nowogrodzki ◽  
K. Ross ◽  
G. Sluder

Eggs have long been a favorite material for studying the mechanism of karyokinesis in-vivo and in-vitro. They can be obtained in great numbers and, when fertilized, divide synchronously over many cell cycles. However, they are not considered to be a practical system for ultrastructural studies on the mitotic apparatus (MA) for several reasons, the most obvious of which is that sectioning them is a formidable task: over 1000 ultra-thin sections need to be cut from a single 80-100 μm diameter egg and of these sections only a small percentage will contain the area or structure of interest. Thus it is difficult and time consuming to obtain reliable ultrastructural data concerning the MA of eggs; and when it is obtained it is necessarily based on a small sample size.We have recently developed a procedure which will facilitate many studies concerned with the ultrastructure of the MA in eggs. It is based on the availability of biological HVEM's and on the observation that 0.25 μm thick serial sections can be screened at high resolution for content (after mounting on slot grids and staining with uranyl and lead) by phase contrast light microscopy (LM; Figs 1-2).


Author(s):  
D.J.P. Ferguson ◽  
M. Virji ◽  
H. Kayhty ◽  
E.R. Moxon

Haemophilus influenzae is a human pathogen which causes meningitis in children. Systemic H. influenzae infection is largely confined to encapsulated serotype b organisms and is a major cause of meningitis in the U.K. and elsewhere. However, the pathogenesis of the disease is still poorly understood. Studies in the infant rat model, in which intranasal challenge results in bacteraemia, have shown that H. influenzae enters submucosal tissues and disseminates to the blood stream within minutes. The rapidity of these events suggests that H. influenzae penetrates both respiratory epithelial and endothelial barriers with great efficiency. It is not known whether the bacteria penetrate via the intercellular junctions, are translocated within the cells or carried across the cellular barrier in 'trojan horse' fashion within phagocytes. In the present studies, we have challenged cultured human umbilical cord_vein endothelial cells (HUVECs) with both capsulated (b+) and capsule-deficient (b-) isogenic variants of one strain of H. influenzae in order to investigate the interaction between the bacteria and HUVEC and the effect of the capsule.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1929
Author(s):  
Tereza Cervena ◽  
Andrea Rossnerova ◽  
Tana Zavodna ◽  
Jitka Sikorova ◽  
Kristyna Vrbova ◽  
...  

The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.


1991 ◽  
Vol 261 (6) ◽  
pp. C1162-C1172 ◽  
Author(s):  
E. Page ◽  
J. Upshaw-Earley ◽  
G. E. Goings ◽  
D. A. Hanck

We have used a noncontracting in vitro preparation of stretched and unstretched rat atria to estimate contributions of constitutive and regulated pathways to the rates of stretch-augmented and basal secretion of immunoreactive atrial natriuretic peptide (ANP) and to examine effects of inhibition of the secretory sequence by 1) protein synthesis inhibitors, 2) disruption of forward vesicular traffic between endoplasmic reticulum and Golgi with brefeldin A (BFA, and 3) cellular ATP depletion. Protein synthesis inhibition with cycloheximide for 44 min slowed neither basal nor stretch-augmented ANP secretion but instead accelerated stretch-augmented secretion at low (but not at physiological) external Ca2+ concentration, suggesting that the constitutive component does not contribute substantially to either basal or stretch-augmented secretion. BFA, which disassembled Golgi cisternae, increased the stretch-augmented secretory rate via the regulated pathway and prevented Ca(2+)-dependent inactivation with time. Cellular ATP depletion rapidly and completely inhibited stretch-augmented secretion. We conclude that both basal and stretch-augmented utilize the energy-dependent regulated pathway, drawing on a large reservoir of concentrated prohormone stored in granules that is not detectably depleted during 44 min of stretch-augmented secretion at 37 degrees C.


Reproduction ◽  
1976 ◽  
Vol 48 (2) ◽  
pp. 279-284 ◽  
Author(s):  
A. Niemierko ◽  
A. Komar
Keyword(s):  

Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 79-92
Author(s):  
Rosita Smith ◽  
Anne McLaren

In normal mouse embryos developing in vivo, the first appearance of the blastocyst cavity was found to be associated more closely with developmental age, judged by cell number, than with chronological age, i.e. elapsed time since ovulation. When development was slowed by in vitro culture, formation of the blastocoele was delayed. However, cell number itself was not a critical factor, since the number of cells per embryo could be doubled or tripled or halved by experimental manipulation without substantially affecting the timing of blastocoele formation. Experiments in which one cell division was suppressed with cytochalasin-B, leading to tetraploidy, showed that the number of cell divisions since fertilization was also not critical. A possible role is suggested either for nucleocytoplasmic ratio, or for the number of nuclear or chromosomal divisions or DNA replications since fertilization, all of which increase during cleavage.


Sign in / Sign up

Export Citation Format

Share Document