scholarly journals Characterization of proteins from human synovium and mononuclear leucocytes that induce resorption of cartilage proteoglycan in vitro

1983 ◽  
Vol 209 (2) ◽  
pp. 337-344 ◽  
Author(s):  
J Saklatvala ◽  
S J Sarsfield ◽  
L M C Pilsworth

Both human synovial tissue in culture and lectin-stimulated mononuclear leucocytes produced a protein that induced proteoglycan resorption in explants of bovine nasal cartilage and human articular cartilage. On gel filtration the protein had Mr 16000-20000 and on isoelectric focusing its pI was 5.2-5.3. The protein corresponded to catabolin, which has previously been identified as a product of cultured porcine synovial tissue and mononuclear leucocytes. The action of partially purified human catabolin was not inhibited by cortisol, although the activity of the leucocyte supernatants from which it had been isolated was inhibited. For this reason it is not possible to be sure that the active factor detected in the bioassay of the crude leucocyte culture supernatants is in fact catabolin.

2014 ◽  
Vol 103 ◽  
pp. 538-549 ◽  
Author(s):  
Ikuko Kakizaki ◽  
Takashi Mineta ◽  
Mana Sasaki ◽  
Yota Tatara ◽  
Eiji Makino ◽  
...  

1982 ◽  
Vol 206 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Charles J. Malemud ◽  
Victor M. Goldberg ◽  
Roland W. Moskowitz ◽  
Lee L. Getzy ◽  
Robert S. Papay ◽  
...  

Proteoglycan biosynthesis by human osteochondrophytic spurs (osteophytes) obtained from osteoarthritic femoral heads at the time of surgical joint replacement was studied under defined culture conditions in vitro. Osteophytes were primarily present in two anatomic locations, marginal and epi-articular. Minced tissue slices were incubated in the presence of [35S]sulphate or [14C]glucosamine. Osteophytes incorporated both labelled precursors into proteoglycan, which was subsequently characterized by CsCl-isopycnic-density-gradient ultracentrifugation and chromatography on Sepharose CL-2B. The material extracted with 0.5m-guanidinium chloride showed 78.1% of [35S]sulphate in the A1 fraction after centrifugation. Only 23.0% of the [35S]sulphate in this A1 fraction was eluted in the void volume of Sepharose CL-2B under associative conditions. About 60–80% of the [35S]sulphate in the tissue 4m-guanidinium chloride extract was associated with monomeric proteoglycan (fraction D1). The average partition coefficient (Kav.) of the proteoglycan monomer on Sepharose CL-2B was 0.28–0.33. Approx. 12.4% of this monomer formed stable aggregates with high-molecular-weight hyaluronic acid in vitro. Sepharose CL-2B chromatography of fractions with lower buoyant densities (fractions D2–D4) demonstrated elution profiles on Sepharose CL-2B substantially different than that of fraction D1, indicative of the polydisperse nature of the newly synthesized proteoglycan. Analysis of the composition and chain size of the glycosaminoglycans showed the following: (1) preferential elution of both [35S]sulphate and [14C]glucosamine in the 0.5m-LiCl fraction on DEAE-cellulose; (2) the predominant sulphated glycosaminoglycan was chondroitin 6-sulphate (60–70%), with 9–11% keratan sulphate in the monomer proteoglycan; (3) Kav. values of 0.38 on Sephadex G-200 and 0.48 on Sepharose CL-6B were obtained with papain-digested and NaBH4-treated D1 monomer respectively. A comparison of the synthetic with endogenous glycosaminoglycans indicated similar types. These studies indicated that human osteophytes synthesized in vitro sulphated proteoglycans with some characteristics similar to those of mature human articular cartilage, notably in the size of their proteoglycan monomer and predominance of chondroitin 6-sulphate. They differed from articular cartilage primarily in the lack of substantial quantities of keratan sulphate and aggregation properties associated with monomer interaction with hyaluronic acid.


1982 ◽  
Vol 2 (3) ◽  
pp. 147-154 ◽  
Author(s):  
R. Corder ◽  
J. E. C. Sykes ◽  
P. J. Lowry

Significant amounts of somatostatin-like immunor reactivity (SLI) were detected in the extract of a human catecholamine-secreting adrenal medullary tumour. After salt fractionation and reconstitution the major portion of SLI was purified by gel filtration and two HPLC steps; in all three systems it eluted in the position of somatostatin-14. The purified somatostatin-like peptide inhibited, in a dose-related manner, growth hormone release from stimulated perfused rat anterior pituitary ceils in vitro. Amino acid analysis showed the purified peptide to have an identical composition to somatostatin found in other species.


2010 ◽  
Vol 69 (12) ◽  
pp. 2189-2198 ◽  
Author(s):  
Matt J Barter ◽  
Wang Hui ◽  
Rachel L Lakey ◽  
John B Catterall ◽  
Tim E Cawston ◽  
...  

ObjectiveTo investigate if statins prevent cartilage degradation and the production of collagenases and gelatinases in bovine nasal and human articular cartilage after proinflammatory cytokine stimulation.MethodsIn a cartilage degradation model, the effects of several statins were assessed by measuring proteoglycan degradation and collagen degradation, while collagenolytic and gelatinolytic activity in culture supernatants were determined by collagen bioassay and gelatin zymography. The production of matrix metalloproteinases (MMPs) in cartilage and chondrocytes were analysed by real-time reverse transcriptase PCR and immunoassay. Cytokine-induced signalling pathway activation was studied by immunoblotting.ResultsSimvastatin and mevastatin significantly inhibited interleukin 1 (IL-1)+oncostatin M (OSM)-induced collagen degradation; this was accompanied with a marked decrease in collagenase and gelatinase activity from bovine nasal cartilage. The cholesterol pathway intermediate mevalonic acid reversed the simvastatin-mediated protection of cartilage degradation, and the expression and production of collagenase (MMP-1 and MMP-13) and gelatinase (MMP-2 and MMP-9). Statins also significantly decreased MMP-1 and MMP-13 expression in human articular cartilage and chondrocytes stimulated with IL-1+OSM, and blocked the activation of critical proinflammatory signalling pathways required for MMP expression. The loss of the isoprenoid intermediate geranylgeranyl pyrophosphate due to statin treatment accounted for the inhibition of MMP expression and signalling pathway activation.ConclusionsThis study shows, for the first time, that lipophilic statins are able to block cartilage collagen breakdown induced by proinflammatory cytokines, by downregulating key cartilage-degrading enzymes. This demonstrates a possible therapeutic role for statins in acting as anti-inflammatory agents and in protecting cartilage from damage in joint diseases.


Author(s):  
Michael E. Stender ◽  
Christian R. Flores ◽  
Kristin J. Dills ◽  
Gregory M. Williams ◽  
Kevin M. Stewart ◽  
...  

Articular cartilage (AC) is a load bearing material that provides a low friction wear resistant interface in synovial joints. Naturally-occurring and stimulated intrinsic repair of damaged AC is ineffective. Thus, there is a desire to engineer effective replacement tissue that could be used for AC repair. Previous studies [1] have shown that culture of immature cartilage with medium including TGF-β1 will result in a more mature tissue than culture with IGF-1. Detailed characterization of tissue mechanical properties would be helpful for development of cartilage growth models [2].


2020 ◽  
Vol 2 (4) ◽  
pp. 100124
Author(s):  
Jessica Feldt ◽  
Jessica Welss ◽  
Verena Schropp ◽  
Kolja Gelse ◽  
Michael Tsokos ◽  
...  

1978 ◽  
Vol 1 (2) ◽  
pp. 115-118 ◽  
Author(s):  
E. Dmitrovsky ◽  
L.B. Lane ◽  
P.G. Bullough

Sign in / Sign up

Export Citation Format

Share Document