scholarly journals Increase of the activity state and loss of total activity of the branched-chain 2-oxo acid dehydrogenase in rat diaphragm during incubation

1984 ◽  
Vol 224 (2) ◽  
pp. 491-496 ◽  
Author(s):  
A J M Wagenmakers ◽  
J T Schepens ◽  
J H Veerkamp

Actual and total branched-chain 2-oxo acid dehydrogenase activities were determined in homogenates of incubated diaphragms from fed and starved rats. Incubation in Krebs-Ringer buffer increased the activity state, but caused considerable loss of total activity. Palmitate oxidation rates and citrate synthase activities did not significantly change on incubation. Starved muscles showed a higher extent of activation after 15 min of incubation (not after 30 and 60 min) and a smaller loss of total activity. Experiments with the transaminase inhibitor amino-oxyacetate confirm that the contribution of endogenous amino acids to the oxidation precursor pool is also smaller in diaphragms from starved rats on incubation in vitro. These phenomena together cause the higher 14CO2 production from 14C-labelled branched-chain amino acids and 2-oxo acids in muscles from starved than from fed rats. High concentrations of branched-chain 2-oxo acids, and the presence of 2-chloro-4-methyl-pentanoate, octanoate or ketone bodies, increase the extent of activation of the dehydrogenase complex; glucose and pyruvate had no effect. The observed changes of the activity state by these metabolites are discussed in relation to their interaction with branched-chain 2-oxo acid oxidation in incubated hemidiaphragms.

1974 ◽  
Vol 32 (3) ◽  
pp. 615-623 ◽  
Author(s):  
R. D. Sketcher ◽  
W. P. T. James

1. The capacity of animals to conserve branched-chain amino acids was assessed during 3 weeks on a protein-free (PF) diet in groups of female rats at three stages of development, i.e. at weaning (35 g), in a period of rapid growth (85 g) and at maturity (200 g).2. Leucine and valine oxidation was assessed by monitoring the evolution of 14CO2 from a tracer dose of the [1-14C]-labelled L-amino acid given intragastrically. Activities of the L-leucine:2-ketoglutarate aminotransferase (EC 2.6.1.6) and α-keto acid dehydrogenase enzymes in leucine and valine metabolism were also determined in muscle and liver at weekly intervals.3. All three groups of rats given a normal protein intake excreted the same proportion of the dose of labelled leucine and valine. In rats given PF diet there was a consistent reduction in 14CO2 output from both L-[1-14C]leucine and L-[1-14C]valine, but valine was not conserved as efficiently as leucine.4. Muscle dehydrogenase responded to a PF diet in all three groups of rats, but the most marked changes occurred in the youngest group. In addition, there was a decrease in hepatic dehydrogenase activities for leucine and valine catabolism in the weanling group; in older animals there was little change in the α-keto-isovalerate, but a consistent decrease in the activity of the α-keto-isocaproic acid dehydrogenase. The difference in the responsiveness of the dehydrogenases, therefore, matched the difference between leucine and valine oxidation rates in vivo.5. Weanling animals responded rather more efficiently than the older animals to the need to conserve amino acids and there was no evidence of a poorly developed system for adapting to PF intake at this early stage of development.6. Despite reduced catabolism of the amino acids, aminotransferase activities in liver and muscle rose in the first 1–2 weeks on a PF regimen. Aminotransferase activity as such is unlikely to control acid oxidation.


1989 ◽  
Vol 143 (1) ◽  
pp. 321-331 ◽  
Author(s):  
C. D. Moyes ◽  
L. T. Buck ◽  
P. W. Hochachka ◽  
R. K. Suarez

Substrate preferences of isolated mitochondria and maximal enzyme activities were used to assess the oxidative capacities of red muscle (RM) and white muscle (WM) of carp (Cyprinus carpio). A 14-fold higher activity of citrate synthase (CS) in RM reflects the higher mitochondrial density in this tissue. RM mitochondria oxidize pyruvate and fatty acyl carnitines (8:O, 12:O, 16:O) at similarly high rates. WM mitochondria oxidize these fatty acyl carnitines at 35–70% the rate of pyruvate, depending on chain length. WM has only half the carnitine palmitoyl transferase/CS ratio of RM, but similar ratios of beta-hydroxyacyl CoA dehydrogenase/CS. Ketone bodies are poor substrates for mitochondria from both tissues. In both tissues mitochondrial alpha-glycerophosphate oxidation was minimal, and alpha-glycerophosphate dehydrogenase was present at low activities, suggesting the alpha-glycerophosphate shuttle is of minor significance in maintaining cytosolic redox balance in either tissue. The mitochondrial oxidation rates of other substrates relative to pyruvate are as follows: alpha-ketoglutarate 90% (RM and WM); glutamate 45% (WM) and 70% (RM); proline 20% (WM) and 45% (RM). Oxidation of neutral amino acids (serine, glycine, alanine, beta-alanine) was not consistently detectable. These data suggest that RM and WM differ in mitochondrial properties as well as mitochondrial abundance. Whereas RM mitochondria appear to be able to utilize a wide range of metabolic fuels (fatty acids, pyruvate, amino acids but not ketone bodies), WM mitochondria appear to be specialized to use pyruvate.


1986 ◽  
Vol 236 (1) ◽  
pp. 111-114 ◽  
Author(s):  
G W Goodwin ◽  
R Paxton ◽  
S E Gillim ◽  
R A Harris

Oxidative decarboxylation of pyruvate by branched-chain 2-oxo acid dehydrogenase can result in overestimation of the expressed and total activity of hepatic pyruvate dehydrogenase. Pyruvate is a poor substrate for branched-chain 2-oxo acid dehydrogenase relative to the branched-chain oxo acids; however, the comparable total activities of the two complexes in liver, the much greater activity state of branched-chain 2-oxo acid dehydrogenase compared with pyruvate dehydrogenase in most physiological states, and the use of high pyruvate concentrations, explain the interference that can occur in conventional radiochemical or indicator-enzyme linked assays of pyruvate dehydrogenase. Goat antibody that specifically inhibited branched-chain 2-oxo acid dehydrogenase was used in this study to provide a more specific assay for pyruvate dehydrogenase.


1984 ◽  
Vol 223 (3) ◽  
pp. 815-821 ◽  
Author(s):  
A J M Wagenmakers ◽  
J T G Schepens ◽  
J H Veerkamp

Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats.


1990 ◽  
Vol 68 (1) ◽  
pp. 260-265 ◽  
Author(s):  
Joan Letto ◽  
John T. Brosnan ◽  
Margaret E. Brosnan

The interactions between fatty acid oxidation and the oxidation of the 2-oxo acids of the branched chain amino acids were studied in the isolated Langendorff-perfused heart. 2-Oxoisocaproate inhibited the oxidation of oleate, but 2-oxoisovalerate and 2-oxo-3-methylvalerate did not. This difference was not attributable to the magnitude of the flux through the branched chain 2-oxo acid dehydrogenase, which was slightly higher with 2-oxoisovalerate than with 2-oxoisocaproate. Oxidation of 2-oxoisocaproate in the perfused heart was virtually complete, since more than 80% of the isovaleryl-CoA formed from 2-oxo[1-14C]isocaproate was further metabolized to CO2, as determined by comparing 14CO2 production from 2-oxo[14C(U)]isocaproate with that from the 1-14C-labelled compound. Only twice as much 14CO2 was produced from 2-oxo[14C(U)]isovalerate as from the 1-14C-labelled compound, indicating incomplete oxidation. This was confirmed by the accumulation in the perfusion medium of substantial quantities of labelled 3-hydroxyisobutyrate (an intermediate in the pathway of valine catabolism), when hearts were perfused with 2-oxo[14C(U)]isovalerate. The failure of 2-oxoisovalerate to inhibit fatty acid oxidation, then, can be attributed to the fact that its partial metabolism in the heart produces little ATP. We have previously shown that 3-hydroxyisobutyrate is a good gluconeogenic substrate in liver and kidney, and postulate that 3-hydroxyisobutyrate serves as an interorgan metabolite such that valine can serve as a glucogenic amino acid, even when its catabolism proceeds beyond the irreversible 2-oxo acid dehydrogenase in muscle.Key words: branched chain amino acids, branched chain 2-oxoacids, perfused heart, fatty acid metabolism, 3 -hydroxyisobutyrate.


1990 ◽  
Vol 68 (1) ◽  
pp. 161-165 ◽  
Author(s):  
Y. Shimomura ◽  
T. Suzuki ◽  
S. Saitoh ◽  
Y. Tasaki ◽  
R. A. Harris ◽  
...  

The effect of exercise on the activity of branched-chain alpha-keto acid dehydrogenase complex in liver and muscle was studied in rats fed a high-fat (FAT) or a high-carbohydrate (CHO) diet. Both diet groups of rats were offered isoenergetic diets by a meal-feeding method and were trained by treadmill running. On the final day of the experiment, half of the rats in each diet group were exercised by 2 h of running just before they were killed. The activity state of the enzyme complex was elevated maximally by exercise in liver of rats fed the FAT diet but not in liver of rats fed the CHO diet, suggesting that catabolism of branched-chain amino acids in rat liver during exercise was enhanced by the FAT diet. The activity state of the enzyme complex in muscle was enhanced by exercise in both groups of rats, but a significant difference was not observed between the groups. The concentration of branched-chain amino acids was elevated in liver and muscle by exercise in both groups of rats, but the elevated levels in liver were lower in rats fed the FAT diet than in those fed the CHO diet. Serum branched-chain amino acid concentrations were significantly lower in rested rats fed the FAT diet than in those fed the CHO diet, and the leucine and isoleucine concentrations in the former were elevated by exercise, but the serum concentrations in the latter were not significantly affected by exercise. ATP and ADP concentrations in muscle were not significantly affected by either diet or exercise.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 250 (5) ◽  
pp. E599-E604 ◽  
Author(s):  
R. P. Aftring ◽  
K. P. Block ◽  
M. G. Buse

The response of rat skeletal muscle branched-chain alpha-keto acid dehydrogenase to administration of branched-chain amino acids in vivo was determined using a soluble preparation of the enzyme. After detergent extraction of the complex in the presence of kinase and phosphatase inhibitors, initial in vivo activity was typically 1 nmol X min-1 X g muscle-1, with 0.1 mM alpha-[1-14C]ketoisocaproate as substrate. Total activity of the dephosphorylated complex, measured after preincubation with 15 mM Mg2+, typically reached a maximum of 29 nmol X min-1 X g-1. Thus in overnight-fasted rats the complex was 2-3% active. Initial activity increased three- to fivefold after leucine or isoleucine (at higher concentrations) but not valine administration in vivo. After intravenous leucine injection (0.25 mmol/kg) initial muscle enzyme activity increased rapidly and subsequently decreased, paralleling plasma leucine concentrations, while plasma valine and isoleucine decreased. In conclusion, muscle branched-chain alpha-keto acid dehydrogenase complex is rapidly activated when circulating leucine is increased to concentrations that may occur after meals. During hyperleucinemia accelerated valine and isoleucine degradation by muscle may account for the observed "antagonism" among the branched-chain amino acids.


1980 ◽  
Vol 192 (1) ◽  
pp. 155-163 ◽  
Author(s):  
R Odessey

The branched chain 2-oxo acid dehydrogenase from rat skeletal muscle, heart, kidney and liver mitochondria can undergo a reversible activation-inactivation cycle in vitro. Similar results were obtained with the enzyme from kidney mitochondria of pig and cow. The dehydrogenase is markedly inhibited by ATP and the inhibition is not reversed by removing the nucleotide. The non-metabolizable ATP analogue adenosine 5′-[beta gamma-imido] triphosphate can block the effect of ATP when added with the nucleotide, but has no effect by itself, nor can it reverse the inhibition in mitochondria preincubated with ATP. These findings suggest that the branched chain 2-oxo acid dehydrogenase undergoes a stable modification that requires the splitting of the ATP gamma-phosphate group. In skeletal muscle mitochondria the rate of inhibition by ATP is decreased by oxo acid substrates and enhanced by NADH. The dehydrogenase can be reactivated 10-20 fold by incubation at pH 7.8 in a buffer containing Mg2+ and cofactors. Reactivation is blocked by NaF (25 mM). The initial activity of dehydrogenase extracted from various tissues of fed rats varies considerably. Activity is near maximal in kidney and liver whereas the dehydrogenase in heart and skeletal muscle is almost completely inactivated. These studies emphasize that comparisons of branched chain 2-oxo acid dehydrogenase activity under various physiological conditions or in different tissues must take into account its state of activation. Thus the possibility exists that the branched chain 2-oxo acid dehydrogenase may be physiologically regulated via a covalent mechanism.


Sign in / Sign up

Export Citation Format

Share Document