scholarly journals Forskolin refractoriness. Exposure to the diterpene alters guanine nucleotide-dependent adenylate cyclase and calcium-uptake activity of cells cultured from the rat aorta

1987 ◽  
Vol 241 (2) ◽  
pp. 463-467 ◽  
Author(s):  
J F Krall ◽  
N Jamgotchian

Cells with the morphological properties of endothelial cells were cultured from the rat aorta. The cultured cells accumulated 45Ca2+ from the medium in a manner which was stimulated by forskolin and by 8-bromo-cyclic AMP. Pretreating the cultures for 20 h with forskolin diminished forskolin-dependent Ca2+-uptake activity. Adenylate cyclase activity of cultured cell homogenates was stimulated by guanosine 5′-[beta, gamma-imido]triphosphate (p[NH]ppG) and forskolin, and by isoprenaline in the presence, but not in the absence, of guanine nucleotide. p[NH]ppG increased forskolin sensitivity and caused a leftward shift in the forskolin dose-response curve. Pretreating the cultured cells with forskolin for 20 h, conditions that decreased forskolin-dependent Ca2+ uptake, increased basal and guanine nucleotide-dependent adenylate cyclase activity, but not forskolin-dependent activity determined in the absence of p[NH]ppG. Forskolin pretreatment diminished p[NH]ppG's capacity to increase forskolin sensitivity, but did not have a significant effect on either the sensitivity of adenylate cyclase to p[NH]ppG or its responsiveness to isoprenaline. These results suggest that the Ca2+-uptake mechanism is cyclic AMP-dependent and that guanine nucleotides mediated forskolin-dependent cyclic AMP production by the intact cells. In addition, there may be different guanine nucleotide requirements for hormone-receptor coupling and forskolin activation.

1986 ◽  
Vol 237 (2) ◽  
pp. 447-454 ◽  
Author(s):  
R Rizzoli ◽  
V von Tscharner ◽  
H Fleisch

Glucocorticoids are known to increase the cyclic AMP response to parathyroid hormone (PTH) in cultured bone organs or bone cells. Using the osteoblast-like cell line ROS 17/2.8, which possesses receptors for both PTH and glucocorticoids, we investigated which component of the complex hormone receptor-guanine nucleotide regulatory unit—adenylate cyclase was affected by dexamethasone treatment. In response to PTH, isoproterenol or forskolin, a compound that is supposed to act directly on the catalytic unit, cyclic AMP production by intact cells and adenylate cyclase activity in purified plasma membrane were markedly increased by dexamethasone. Whereas NaF, guanosine 5′-[beta gamma-imido]triphosphate and Mn/ stimulated adenylate cyclase activity were similarly enhanced in membranes isolated from glucocorticoid-treated cells, the activity of the stimulatory guanine nucleotide regulatory unit, as assessed by reconstitution into membranes from the CYC- clone, which is genetically devoid of this component, was not altered. Thus in osteoblast-like cells dexamethasone appears to increase cyclic AMP synthesis by influencing the catalytic unit. Moreover, since it has been reported that glucocorticoids may produce changes in cell calcium metabolism, we evaluated cytoplasmic free Ca2+ concentration ([Ca2+]i) and intracellular Ca2+ stores mobilizable by the bivalent-cationophore ionomycin, by using the intracellular fluorescent indicator Quin-2. The results indicated that dexamethasone treatment did not influence [Ca2+]i but markedly decreased ionomycin-releasable Ca2+ stores.


1983 ◽  
Vol 214 (1) ◽  
pp. 93-98 ◽  
Author(s):  
C M Heyworth ◽  
M D Houslay

Membrane fractions obtained from hepatocytes treated with glucagon exhibited a decreased glucagon (with or without GTP)-stimulated adenylate cyclase activity. A maximum effect was seen in around 5 min. No change in the rate of cyclic AMP production was observed for the basal, NaF-, p[NH]ppG (guanosine 5′-[beta, gamma-imido]-triphosphate)- and GTP-stimulated states of the enzyme. The lag observed in the p[NH]ppG-stimulated adenylate cyclase activity of native membranes was abolished when membranes from glucagon-pretreated cells were used. When Mn2+ replaced Mg2+ in the assays, the magnitude of the apparent desensitization was decreased. Mn2+ abolished the lag of onset of p[NH]ppG-stimulated activity in native membranes. The desensitization process was dose-dependent on glucagon, which exhibited a Ka of 4 X 10(-10) M. Depletion of intracellular ATP did not affect this process. It is suggested that this desensitization occurs at the level of the guanine nucleotide-regulatory protein.


Author(s):  
L.S. Cutler

Many studies previously have shown that the B-adrenergic agonist isoproterenol and the a-adrenergic agonist norepinephrine will stimulate secretion by the adult rat submandibular (SMG) and parotid glands. Recent data from several laboratories indicates that adrenergic agonists bind to specific receptors on the secretory cell surface and stimulate membrane associated adenylate cyclase activity which generates cyclic AMP. The production of cyclic AMP apparently initiates a cascade of events which culminates in exocytosis. During recent studies in our laboratory it was observed that the adenylate cyclase activity in plasma membrane fractions derived from the prenatal and early neonatal rat submandibular gland was retractile to stimulation by isoproterenol but was stimulated by norepinephrine. In addition, in vitro secretion studies indicated that these prenatal and neonatal glands would not secrete peroxidase in response to isoproterenol but would secrete in response to norepinephrine. In contrast to these in vitro observations, it has been shown that the injection of isoproterenol into the living newborn rat results in secretion of peroxidase by the SMG (1).


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 73-78
Author(s):  
Josiane Coulon ◽  
Monique Marilley

Biochemical assays of adenylate cyclase activity were performed during the early phases of regeneration in Owenia fusiformis (Polychaete Annelid). The results indicate the existence of a strong stimulation in an early phase following trauma. This stimulation is then followed by periodic fluctuations exhibiting a diurnal rhythm correlated with the cell cycle. Adenylate cyclase activity is also shown to be neurotransmitter-dependent. In this paper it is proposed that neurotransmitters might participate in the regulation of cyclic AMP formation, by means of adenylate cyclase acting on target blastema cells, undergoing the cell cycle.


1994 ◽  
Vol 297 (1) ◽  
pp. 233-239 ◽  
Author(s):  
P A Stevens ◽  
S Pyne ◽  
M Grady ◽  
N J Pyne

Treatment of cultured tracheal smooth-muscle cells (TSM) with phorbol 12-myristate 13-acetate (PMA) (100 nM) or bradykinin (100 nM) elicited enhanced basal and guanosine 5′-[beta gamma-imido]-triphosphate-stimulated adenylate cyclase activities in subsequently isolated membranes. Combined stimulation of cells was non-additive, indicating that both agents activate adenylate cyclase via similar routes. Both PMA (100 nM) and bradykinin (100 nM) allowed the alpha subunit of Gs to act as a more favourable substrate for its cholera-toxin-catalysed ADP-ribosylation in vitro. PMA was without effect on intracellular cyclic AMP in control cells. However, constitutive activation of Gs by treatment in vivo with cholera toxin (0.5 ng/ml, 18 h) sensitized the cells to PMA stimulation, resulting in a concentration-dependent increase in intracellular cyclic AMP accumulation (EC50 = 7.3 +/- 2.5 nM, n = 5). Bradykinin also elicited a concentration-dependent increase in intracellular cyclic AMP (EC50 = 63.3 +/- 14.5 nM, n = 3). Constitutive activation of Gs resulted in an increased maximal response (10-fold) and potency (EC50 = 6.17 +/- 1.6 nM, n = 3) to bradykinin. This response was not affected by the B2-receptor antagonist, NPC567 [which selectively blocks bradykinin-stimulated phospholipase C (PLC), with minor activity against phospholipase D (PLD) activity]. Des-Arg9-bradykinin (a B1-receptor agonist) was without activity. These results suggest that the receptor sub-type capable of activating PLD may also be stimulatory for cyclic AMP accumulation. Furthermore, pre-treatment of the cells with butan-l-ol (0.3%, v/v), which traps phosphatidate derived from PLD reactions, blocked the bradykinin-stimulated increase in intracellular cyclic AMP. These studies suggest that there may be a causal link between PLD-derived phosphatidate and the positive modulation of adenylate cyclase activity. In support of this, the concentration-dependence for bradykinin-stimulated adenylate cyclase activity was identical with that of bradykinin-stimulated phospholipase D activity (EC50 = 5 nM). Bradykinin, but not PMA, was also capable of eliciting the inhibition of cyclic AMP phosphodiesterase activity in TSM cells (EC50 > 100 nM) via an unidentified mechanism. These studies indicate that cross-regulation between the cyclic AMP pathway and phospholipid-derived second messengers in TSM cells does not occur as a consequence of PLC-catalysed PtdIns(4,5)P2 hydrolysis, but may involve, in part, PLD-catalysed phosphatidylcholine hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document