scholarly journals Extended and globular protein domains in cartilage proteoglycans

1987 ◽  
Vol 245 (3) ◽  
pp. 763-772 ◽  
Author(s):  
M Paulsson ◽  
M Mörgelin ◽  
H Wiedemann ◽  
M Beardmore-Gray ◽  
D Dunham ◽  
...  

Electron microscopy after rotary shadowing and negative staining of the large chondroitin sulphate proteoglycan from rat chondrosarcoma, bovine nasal cartilage and pig laryngeal cartilage demonstrated a unique multidomain structure for the protein core. A main characteristic is a pair of globular domains (diameter 6-8 nm), one of which forms the N-terminal hyaluronate-binding region. They are connected by a 25 nm-long rod-like domain of limited flexibility. This segment is continued by a 280 nm-long polypeptide strand containing most chondroitin sulphate chains (average length 40 nm) in a brush-like array and is terminated by a small C-terminal globular domain. The core protein showed a variable extent of degradation, including the loss of the C-terminal globular domain and sections of variable length of the chondroitin sulphate-bearing strand. The high abundance (30-50%) of the C-terminal domain in some extracted proteoglycan preparations indicated that this structure is present in the cartilage matrix rather than being a precursor-specific segment. It may contain the hepatolectin-like segment deduced from cDNA sequences corresponding to the 3′-end of protein core mRNA [Doege, Fernandez, Hassell, Sasaki & Yamada (1986) J. Biol. Chem. 261, 8108-8111; Sai, Tanaka, Kosher & Tanzer (1986) Proc. Natl. Acad. Sci. 83, 5081-5085; Oldberg, Antonsson & Heinegård (1987) Biochem. J. 243, 255-259].

1979 ◽  
Vol 179 (3) ◽  
pp. 561-572 ◽  
Author(s):  
R L Stevens ◽  
R J Ewins ◽  
P A Revell ◽  
H Muir

The structure of the proteoglycans from normal pig nucleus pulposus and relatively normal human annulus fibrosus and nucleus pulposus was investigated in detail and the results were compared with the current structural model of proteoglycans of hyaline cartilage. Like proteoglycans of cartilage, those of intervertebral disc contain keratan sulphate and chondroitin sulphate attached to a protein core; they are able to aggregate to hyaluronic acid; the protein core likewise has three regions, one lacking glycosaminoglycans, another rich in keratan sulphate and a third region rich in chondroitin sulphate. However, disc proteoglycans contain more keratan sulphate and protein and less chondroitin sulphate and are also considerably smaller than cartilage proteoglycans. In proteoglycans of human discs, these differences appeared to be due principally to a shorter region of the core protein bearing the chondroitin sulphate chains, whereas in proteoglycans of pig discs their smaller size and relatively low uronic acid content were due to shorter chondroitin sulphate chains. There were subtle differences between proteoglycans from the nucleus and annulus of human discs. In the latter a higher proportion of proteoglycans was capable of binding to hyaluronate.


1981 ◽  
Vol 199 (1) ◽  
pp. 81-87 ◽  
Author(s):  
J Wieslander ◽  
D Heinegård

Antibodies directed against whole bovine nasal-cartilage proteoglycan and against the hyaluronic acid-binding region and chondroitin sulphate peptides from the same molecule were used in immunodiffusion and immunoelectromigration experiments. Proteoglycans from bovine nasal and tracheal cartilage showed immunological identity, with all three antisera. Proteoglycans from pig hip articular cartilage, dog hip articular cartilage, human tarsal articular cartilage and rat chondrosarcoma reacted with all the antisera and showed immunological identity with the corresponding structures isolated from bovine nasal-cartilage proteoglycans. In contrast, proteoglycans from rabbit articular cartilage, rabbit nasal cartilage and cultured chick limb buds did not react with the antibodies directed against the hyaluronic acid-binding region, though reacting with antibodies raised against whole proteoglycan monomer and against chondroitin sulphate peptides. All the proteoglycans gave two precipitation lines with the anti-(chondroitin sulphate peptide) antibodies. Similarly, the proteoglycans reacting with the anti-(hyaluronic acid-binding region) antibodies gave two precipitation lines. The results indicate the presence of at least two populations of aggregating proteoglycan monomers in cartilage. The relative affinity of the antibodies for cartilage proteoglycans and proteoglycan substructures from various species was determined by radioimmunoassay. The affinity of the anti-(hyaluronic acid-binding region) antibodies for the proteoglycans decreased in the order bovine, dog, human and pig cartilage. Rat sternal-cartilage and rabbit articular-cartilage proteoglycans reacted weakly, whereas chick limb-bud and chick sternal-cartilage proteoglycans did not react. In contrast, the affinity of antibodies to chondroitin sulphate peptides for proteoglycans increased in the order bovine cartilage, chick limb bud and chick sternal cartilage, dog cartilage, rat chondrosarcoma, human cartilage, pig cartilage, rat sternal cartilage and rabbit cartilage.


1979 ◽  
Vol 179 (3) ◽  
pp. 573-578 ◽  
Author(s):  
R L Stevens ◽  
P G Dondi ◽  
H Muir

Proteoglycans extracted with 4M-guanidinium chloride from pig intervetebral discs, and purified by equilibrium density-gradient centrifugation in CsCl, were of smaller hydrodynamic size than those extracted and purified in the same way from the laryngeal cartilage of the same animal. Whether this difference in size arose from degradation during the extraction and purification of the proteoglycans of the disc was investigated. Purified proteoglycans labelled either in the chondroitin sulphate chains or in the core protein were obtained from laryngeal cartilage by short-term organ culture. These labelled proteoglycans were added at the beginning of the extraction of the disc proteoglycans, and labelled cartilage and unlabelled disc proteoglycans were isolated and purified together. There was no appreciable loss of radioactivity after density-gradient centrifugation nor decrease in hydrodynamic size of the labelled cartilage proteoglycans on chromatography on Sepharose 2B, when these were present during the extraction of disc proteoglycans. It is concluded that disc proteoglycans are intrinsically of smaller size than cartilage proteoglycans and this difference in size does not arise from degradation during the extraction.


1987 ◽  
Vol 241 (2) ◽  
pp. 591-601 ◽  
Author(s):  
M Sobue ◽  
H Habuchi ◽  
K Ito ◽  
H Yonekura ◽  
K Oguri ◽  
...  

A series of aryl and alkyl O-beta-D-xylosides and their analogues with S, NH or CH2 in the glycosidic linkage were prepared and examined for their ability to act as artificial chain initiators of chondroitin (dermatan) sulphate synthesis in embryonic chick cartilage, foetal rat skin and 6-week-old-rat aorta under conditions where normal protein-core synthesis was inhibited by cycloheximide. For all these tissues in culture, phenyl O-beta-D-xyloside and phenyl beta-D-thioxyloside were clearly more effective than the corresponding N-xyloside and homo-C-xyloside. Introduction of a carboxy group to the para position of their aglycone yielded derivatives with far lower initiator activity. In a concentration range lower than 0.1 mM, the effectiveness of alkyl beta-D-thioxyloside was greatly influenced by the carbon number (n) of the alkyl group and was at a maximum at n = 7 or 8 for the cartilage, at n = 5 for the skin and at n = 4 for the aorta. In the beta-xyloside-treated cartilages, the average length of newly formed chondroitin sulphate chains reflected the chain-initiator activity of added xyloside, i.e. the higher the initiator activity, the shorter the average chain length. In the skin and aorta, none of the drugs could relieve the inhibition of heparan sulphate synthesis caused by cycloheximide. Fertilized hens' eggs were each injected on day 9 with 9.2 mumol of beta-xyloside and the skeletal systems of embryos were examined a week later. The embryos treated with beta-xylosides of relatively high initiator activity showed a 30-40% decrease in the overall growth rate of skeletons, whereas those treated with beta-xylosides of low initiator activity showed little or no decrease in the growth rate. The results are consistent with the notion that the observed change in skeletal morphology results mainly, if not completely, from beta-xyloside-induced synthesis of core-protein-free chondroitin sulphate, and further suggest that a procedure employing a series of beta-xyloside homologues with various initiator activities will furnish an easily applied criterion on which to test the specificity of xyloside action on biological processes.


1978 ◽  
Vol 175 (3) ◽  
pp. 913-919 ◽  
Author(s):  
Dick Heinegård ◽  
Stefan Lohmander ◽  
Johan Thyberg

1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.


1988 ◽  
Vol 253 (1) ◽  
pp. 175-185 ◽  
Author(s):  
M Mörgelin ◽  
M Paulsson ◽  
T E Hardingham ◽  
D Heinegård ◽  
J Engel

Aggregates formed by the interaction of cartilage proteoglycan monomers and fragments thereof with hyaluronate were studied by electron microscopy by use of rotary shadowing [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333]. The differences in shape and packing of the proteins bound along the hyaluronate strand in aggregates formed in the presence and in the absence of link protein were examined in detail. The high resolution of the method allowed examination of the involvement in hyaluronate binding of the globular core-protein domains G1, G2 and G3 [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333; Paulsson, Mörgelin, Wiedemann, Beardmore-Gray, Dunham, Hardingham, Heinegård, Timpl & Engel (1987) Biochem. J. 245, 763-772]. Fragments comprising the globular hyaluronate-binding region G1 form complexes with hyaluronate with an appearance of necklace-like structures, statistically interspaced by free hyaluronate strands. The closest centre-to-centre distance found between adjacent G1 domains was 12 nm. Another fragment comprising the binding region G1 and the adjacent second globular domain G2 attaches to hyaluronate only by one globule. Also, the core protein obtained by chondroitinase digestion of proteoglycan monomer binds only by domain G1, with domain G3 furthest removed from the hyaluronate. Globule G1 shows a statistical distribution along the hyaluronate strands. In contrast, when link protein is added, binding is no longer random, but instead uninterrupted densely packed aggregates are formed.


1976 ◽  
Vol 157 (1) ◽  
pp. 127-143 ◽  
Author(s):  
T E Hardingham ◽  
R J F Ewins ◽  
H Muir

Purified proteoglycans extracted from pig laryngeal cartilage in 0.15 M-NaCl and 4 M-guanidinium chloride were analysed and their amino acid compositions determined. Selective modification of amino acid residues on the protein core confirmed that binding to hyaluronate was a function of the protein core, and was dependent on disulphide bridges, intact arginine and tryptophan residues, and epsilon-amino groups of lysine. Fluorescence measurement suggested that tryptophan was not involved in direct subsite interactions with the hyaluronate. The polydispersity in size and heterogeneity in composition of the aggregating proteoglycan was compatible with a structure based on a protein core containing a globular hyaluronate-binding region and an extended region of variable length also containing a variable degree of substitution with chondroitin sulphate chains. The non-aggregated proteoglycan extracted preferentially in 0.15 M-NaCl, which was unable to bind to hyaluronate, contained less cysteine and tryptophan than did other aggregating proteoglycans and may be deficient in the hyaluronate-binding region. Its small average size and low protein and keratan sulphate contents suggest that it may be a fragment of the chondroitin sulphate-bearing region of aggregating proteoglycan produced by proteolytic cleavage of newly synthesized molecules before their secretion from the cell.


1982 ◽  
Vol 202 (2) ◽  
pp. 387-395 ◽  
Author(s):  
D Mitchell ◽  
T Hardingham

Chondroitin sulphate synthesis on proteoglycans was decreased in rat chondrosarcoma cell cultures in the presence of cycloheximide (0.1-1.0 muM) or p-nitrophenyl beta-D-xyloside (50 microM). In the presence of cycloheximide the proteoglycan monomer was of larger size, the chondroitin sulphate chains were increased in length, but a similar number of chains was attached to each proteoglycan and the size of the core protein was unaltered. In the presence of p-nitrophenyl beta-D-xyloside (50 microM), chondroitin sulphate synthesis was increased (by 60-80%), but the incorporation into proteoglycans was decreased (by 70%). The chondroitin sulphate chains were of shorter length than in control cultured and the number of chains attached to each proteoglycan was decreased. In cultures with cycloheximide or actinomycin D the synthesis of chondroitin sulphate was less inhibited on beta-xyloside than on endogenous proteoglycan. When the rate of chondroitin sulphate synthesis was decreased by lowering the temperature of cultures, the chains synthesized at 22 and 4 degrees C were much longer than at 37 degrees C, but in the presence of p-nitrophenyl beta-D-xyloside the chains were of the same length at all three temperatures. A model of chain elongation is thus proposed in which the rate of chain synthesis is determined by the concentration of xylosyl acceptor and the length of the chains is determined by the ratio of elongation activity to xylosyl-acceptor concentration.


1987 ◽  
Vol 248 (3) ◽  
pp. 735-740 ◽  
Author(s):  
C Webber ◽  
T T Glant ◽  
P J Roughley ◽  
A R Poole

After chromatography on Sepharose CL-2B under associative conditions, high-buoyant-density human articular-cartilage proteoglycans were analysed biochemically and by radioimmunoassay with monoclonal antibodies to a core-protein-related epitope and to keratan sulphate. An examination of proteoglycans from individuals of different ages revealed the presence at 1 year of mainly a single polydisperse population containing chondroitin sulphate (uronic acid) and keratan sulphate. From 4 years onwards a smaller keratan sulphate-rich and chondroitin sulphate-deficient population appears in increasing amounts until 15 years. At the same time the larger population shows a progressive decrease in size from 1 year onward. By 23 years and after the proportion of keratan sulphate in the larger chondroitin sulphate-rich proteoglycan increases. Both adult proteoglycan populations are shown immunologically to aggregate with hyaluronic acid, with the smaller showing a greater degree of interaction. The larger population is richer in serine and glycine, and the smaller population contains more glutamic acid/glutamine, alanine, phenylalanine, lysine and arginine; its protein content is also higher. Whether the larger post-natal population represents a different gene product from the single polydisperse population found in the human fetus, which has a different amino acid composition, remains to be established. The smaller population, which represents approximately one-third the mass of the larger population in the adult, may represent a degradation product of the larger population, in which the hyaluronic acid-binding region and keratan sulphate-rich region are conserved.


1984 ◽  
Vol 224 (1) ◽  
pp. 331-333 ◽  
Author(s):  
H Wiedemann ◽  
M Paulsson ◽  
R Timpl ◽  
J Engel ◽  
D Heinegård

The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.


Sign in / Sign up

Export Citation Format

Share Document