scholarly journals Fish skeletal muscle contains a novel serine proteinase with an unusual subunit composition

1989 ◽  
Vol 263 (2) ◽  
pp. 471-475 ◽  
Author(s):  
E J E Folco ◽  
L Busconi ◽  
C B Martone ◽  
J J Sánchez

Proteinase I, an enzyme previously shown to be able to degrade contractile and cytoskeletal elements of white-croaker (Micropogon opercularis) myofibrils, was purified to apparent homogeneity by chromatography on DEAE-Sephacel, octyl-Sepharose CL 4B and arginine-Sepharose 4B. Its Mr was determined to be 269,000 by Sephacryl S-300 gel filtration. Under denaturing conditions, the enzyme dissociated into two subunits with Mr 20,000 and 15,500, in a molar ratio of 1.8:1. Proteinase I showed a pH optimum of 8.5. The enzyme was strongly inhibited by several serine proteinase inhibitors, whereas inhibitors of the other types of proteinases did not affect, or only scarcely affected, its activity. Several N-terminal-blocked 4-methyl-7-coumarylamide substrates having either arginine or lysine residues adjacent to the fluorogenic group were efficiently hydrolysed by the enzyme. These results indicate that proteinase I is a trypsin-like serine proteinase. The enzyme appears to be distinct from other proteinases previously described in skeletal muscle, and might be involved in the catabolism of myofibrillar proteins.

1987 ◽  
Vol 241 (1) ◽  
pp. 129-135 ◽  
Author(s):  
R Zolfaghari ◽  
C R Baker ◽  
P C Canizaro ◽  
A Amirgholami ◽  
F J Bĕhal

A high-Mr neutral endopeptidase-24.5 (NE) that cleaved bradykinin at the Phe5-Ser6 bond was purified to apparent homogeneity from human lung by (NH4)2SO4 fractionation, ion-exchange chromatography and gel filtration. The final enzyme preparation produced a single enzymically active protein band after electrophoresis on a 5% polyacrylamide gel. Human lung NE had an Mr of 650,000 under non-denaturing conditions, but after denaturation and electrophoresis on an SDS/polyacrylamide gel NE dissociated into several lower-Mr components (Mr 21,000-32,000) and into two minor components (Mr approx. 66,000). The enzyme activity was routinely assayed with the artificial substrate Z-Gly-Gly-Leu-Nan (where Z- and -Nan represent benzyloxycarbonyl- and p-nitroanilide respectively). NE activity was enhanced slightly by reducing agents, greatly diminished by thiol-group inhibitors and unchanged by serine-proteinase inhibitors. Human lung NE was inhibited by the univalent cations Na+ and K+. No metal ions were essential for activity, but the heavy-metal ions Cu2+, Hg2+ and Zn2+ were potent inhibitors. With the substrate Z-Gly-Gly-Leu-Nan a broad pH optimum from pH 7.0 to pH 7.6 was observed, and a Michaelis constant value of 1.0 mM was obtained. When Z-Gly-Gly-Leu-Nap (where -Nap represents 2-naphthylamide) was substituted for the above substrate, no NE-catalysed hydrolysis occurred, but Z-Leu-Leu-Glu-Nap was readily hydrolysed by NE. In addition, NE hydrolysed Z-Gly-Gly-Arg-Nap rapidly, but at pH 9.8 rather than in the neutral range. Although human lung NE was stimulated by SDS, the extent of stimulation was not appreciable as compared with the extent of SDS stimulation of NE from other sources.


1995 ◽  
Vol 41 (9) ◽  
pp. 1273-1282 ◽  
Author(s):  
Z Chen ◽  
A Prestigiacomo ◽  
T A Stamey

Abstract We describe for the first time a protocol to purify to apparent homogeneity an in vitro-prepared complex of prostate-specific antigen (PSA) and alpha 1-antichymotrypsin (ACT) by using a combination of gel filtration and ion-exchange chromatography. The purity of the PSA-ACT complex was confirmed by gel electrophoresis and Western blot. The PSA-ACT complex was stable in the pH range 6.0 to 7.8; it was also stable in various matrices, temperatures, and high concentrations of salt. Purification of the PSA-ACT complex was highly reproducible. An absorptivity of 0.99 L x g-1 x cm-1 at 280 nm was assigned to the PSA-ACT complex, based on amino acid analysis. Because PSA and ACT bind in a 1:1 molar ratio, we determined the molecular mass of the PSA-ACT complex as the mass encoded by the cDNA of ACT (plus 26% carbohydrate) plus the molecular mass of PSA (28,430 Da), which totals 89,280 Da. Using this material, we made two common calibrators, one of 100% PSA-ACT complex and one of 90% PSA-ACT complex plus 10% free PSA by volume (90:10 calibrator). Substitution of these calibrators for the manufacturers' calibrators in nine commercial immunoassays substantially reduced differences between immunoassays, especially for serum PSA values between 4 and 10 micrograms/L. The 90:10 calibrator is recommended as a universal calibrator for international standardization of PSA immunoassays.


1981 ◽  
Author(s):  
R Wallin ◽  
M Belew ◽  
K Ohlsson ◽  
T Saldeen

The presence of leucocytes around extravascular fibrin deposits suggests that the leucocyte elastases might be partly responsible for the extravascular degradation of fibrin. Our previous studies have shown that the degradation of fibrin(ogen) by plasmin leads to the release of 2 small peptides which markedly increase vascular permeability and induce oedema e.g. in the lungs. The results of this investigation show that small peptides released from fibrinogen after degradation by leucocytes elastases also increase vascular permeability.Human fibrinogen (Kabi, Grade L) was made plasminogenfree by affinity chromatography on Lysine-Sepharose 4B prior to use. The human leucocyte elastases were isolated from extracts of lysosome-like granules of human leukaemic myeloid cells by a combination of gel filtration, affinity chromatography and preparative agarose gel electrophoresis. The fibrinogen (0.5 %) and the leucocyte elastases (in a molar ratio of 100:1) were incubated together for 48 h at +37°C and at pH 8.5. The mixture was then cooled to +4°C to stop the lysis and ultrafiltrated on a DIAFLO PM 10 membrane until the retentate was approximately 10 % of the starting volume. The peptides in the diffusate accounted for about 20 % of the starting material as estimated from absorbance measurements at 280 nm. The diffusate was concentrated by lyophilization and fractionated by chromatography on a column of Bio-Gel P-6. At least 8 fractions were obtained of which only two showed a significant activity in their ability to increase vascular permeability in rat skin. The active peptides in these two fractions were further purified to homogeneity by column zone electrophoresis at various pHs and their amino acid compositions established.


1978 ◽  
Vol 175 (3) ◽  
pp. 1051-1067 ◽  
Author(s):  
K K Mäkinen ◽  
P L Mäkinen

Two arylamidases (I and II) were purified from human erythrocytes by a procedure that comprised removal of haemoglobin from disrupted cells with CM-Sephadex D-50, followed by treatment of the haemoglobin-free preparation subsequently with DEAE-cellulose, gel-permeation chromatography on Sephadex G-200, gradient solubilization on Celite, isoelectric focusing in a pH gradient from 4 to 6, gel-permeation chromatography on Sephadex G-100 (superfine), and finally affinity chromatography on Sepharose 4B covalently coupled to L-arginine. In preparative-scale purifications, enzymes I and II were separated at the second gel-permeation chromatography. Enzyme II was obtained as a homogeneous protein, as shown by several criteria. Enzyme I hydrolysed, with decreasing rates, the L-amino acid 2-naphtylamides of lysine, arginine, alanine, methionine, phenylalanine and leucine, and the reactions were slightly inhibited by 0.2 M-NaCl. Enzyme II hydrolysed most rapidly the corresponding derivatives of arginine, leucine, valine, methionine, proline and alanine, in that order, and the hydrolyses were strongly dependent on Cl-. The hydrolysis of these substrates proceeded rapidly at physiological Cl- concentration (0.15 M). The molecular weights (by gel filtration) of enzymes I and II were 85 000 and 52 500 respectively. The pH optimum was approx. 7.2 for both enzymes. The isoelectric point of enzyme II was approx. 4.8. Enzyme I was activated by Co2+, which did not affect enzyme II to any noticeable extent. The kinetics of reactions catalysed by enzyme I were characterized by strong substrate inhibition, but enzyme II was not inhibited by high substrate concentrations. The Cl- activated enzyme II also showed endopeptidase activity in hydrolysing bradykinin.


1994 ◽  
Vol 4 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Mohammed Tasneem ◽  
Clive A. Cornford ◽  
Michael T. McManus

AbstractA survey of proteinaceous inhibitors of the serine proteinases, bovine trypsin and chymotrypsin, that are extractable from dry seeds of several cultivars of pasture grasses has been undertaken. Using crude extracts, most cultivars screened contained inhibitors of chymotrypsin, whereas trypsin inhibition was not detectable. Seeds from four cultivars, Lolium perenne L. cv. Grasslands Ruanui, Lolium × boucheanum cv. Grasslands Greenstone, Festuca arundinacea Schreb. cultivars Grasslands Roa and Grasslands Garland, that contained more potent chymotrypsin inhibition were purified further. After gel filtration chromatography, both trypsin and chymotrypsin inhibition could be observed in all four cultivars, and each separated into two discrete native molecular weights; one of ca. 20–22 kDa and one of ca. 8–10 kDa. However, activity staining, after polyacrylamide gel electrophoresis, revealed an array of iso-inhibitors with molecular weights that ranged from ca. 3 kDa to 20 kDa. One of these, a dual trypsin/chymotrypsin inhibitor of ca. 12 kDa that is present in all four cultivars examined, was purified to homogeneity from F. arundinacea cv. Grasslands Garland using anhydro-trypsin affinity chromatography and reverse-phase HPLC. The protein was found to comprise two closely related peptides and N-terminal amino acid sequencing revealed highest identity with a trypsin inhibitor identified in rye (Secale cereale) seeds.


1984 ◽  
Vol 218 (3) ◽  
pp. 953-959 ◽  
Author(s):  
L Kuehn ◽  
M Rutschmann ◽  
B Dahlmann ◽  
H Reinauer

Three different serine proteinase inhibitors were isolated from rat serum and purified to apparent homogeneity. One of the inhibitors appears to be homologous to alpha 1-proteinase inhibitor isolated from man and other species, but the other two, designated rat proteinase inhibitor I and rat proteinase inhibitor II, seem to have no human counterpart. alpha 1-Proteinase inhibitor (Mr 55000) inhibits trypsin, chymotrypsin and elastase, the three serine proteinases tested. Rat proteinase inhibitor I (Mr 66000) is active towards trypsin and chymotrypsin, but is inactive towards elastase. Rat proteinase inhibitor II (Mr 65000) is an effective inhibitor of trypsin only. Their contributions to the trypsin-inhibitory capacity of rat serum are about 68, 14 and 18% for alpha 1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor II respectively.


1999 ◽  
Vol 181 (4) ◽  
pp. 1256-1263 ◽  
Author(s):  
Shunji Takahashi ◽  
Tomohisa Kuzuyama ◽  
Haruo Seto

ABSTRACT The eubacterial 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34 ) was purified 3,000-fold fromStreptomyces sp. strain CL190 to apparent homogeneity with an overall yield of 2.1%. The purification procedure consisted of (NH4)2SO4 precipitation, heat treatment and anion exchange, hydrophobic interaction, and affinity chromatographies. The molecular mass of the enzyme was estimated to be 41 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 100 to 105 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a dimer. The enzyme showed a pH optimum of around 7.2, with apparent Km values of 62 μM for NADPH and 7.7 μM for HMG-CoA. A gene from CL190 responsible for HMG-CoA reductase was cloned by the colony hybridization method with an oligonucleotide probe synthesized on the basis of the N-terminal sequence of the purified enzyme. The amino acid sequence of the CL190 HMG-CoA reductase revealed several limited motifs which were highly conserved and common to the eucaryotic and archaebacterial enzymes. These sequence conservations suggest a strong evolutionary pressure to maintain amino acid residues at specific positions, indicating that the conserved motifs might play important roles in the structural conformation and/or catalytic properties of the enzyme.


2015 ◽  
Vol 46 (3) ◽  
pp. 481-488 ◽  
Author(s):  
E. Wieczorek ◽  
I. Lorenc-Kubis ◽  
B. Morawiecka

Acid phosphatase F1 from <i>Avena elatior</i> seeds was isolated and partially purified by means of alcohol precepitation, DEAE-, CM-column chromatography, Sephadex G-150, Sephadex G-200 and Sepharose 4B - gel filtration. The enzyme was stable at 50°C, pH 5.1. The pH optimum for phosphatase activity was 4.2. Fluoride, Zn<sup>2+</sup>, molybdate were effective inhibitors. EDTA and l, 10-phenanthroline activated the enzyme.


2003 ◽  
Vol 69 (9) ◽  
pp. 5089-5095 ◽  
Author(s):  
Juan-José R. Coque ◽  
María Luisa Álvarez-Rodríguez ◽  
Germán Larriba

ABSTRACT A novel S-adenosyl-l-methionine (SAM)-dependent methyltransferase catalyzing the O methylation of several chlorophenols and other halogenated phenols was purified 220-fold to apparent homogeneity from mycelia of Trichoderma longibrachiatum CECT 20431. The enzyme could be identified in partially purified protein preparations by direct photolabeling with [methyl-3H]SAM, and this reaction was prevented by previous incubation with S-adenosylhomocysteine. Gel filtration indicated that the M r was 112,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme was composed of two subunits with molecular weights of approximately 52,500. The enzyme had a pH optimum between 8.2 and 8.5 and an optimum temperature of 28°C, with a pI of 4.9. The Km values for 2,4,6-trichlorophenol and SAM were 135.9 ± 12.8 and 284.1 ± 35.1 μM, respectively. S-Adenosylhomocysteine acted as a competitive inhibitor, with a Ki of 378.9 ± 45.4 μM. The methyltransferase was also strongly inhibited by low concentrations of several metal ions, such as Cu2+, Hg2+, Zn2+, and Ag+, and to a lesser extent by p-chloromercuribenzoic acid, but it was not significantly affected by several thiols or other thiol reagents. The methyltransferase was specifically induced by several chlorophenols, especially if they contained three or more chlorine atoms in their structures. Substrate specificity studies showed that the activity was also specific for halogenated phenols containing fluoro, chloro, or bromo substituents, whereas other hydroxylated compounds, such as hydroxylated benzoic acids, hydroxybenzaldehydes, phenol, 2-metoxyphenol, and dihydroxybenzene, were not methylated.


Sign in / Sign up

Export Citation Format

Share Document