scholarly journals Isolation and characterization of a membrane-attack-complex-inhibiting protein present in human serum and other biological fluids

1990 ◽  
Vol 265 (2) ◽  
pp. 471-477 ◽  
Author(s):  
M J Watts ◽  
J R Dankert ◽  
B P Morgan

We have previously reported the isolation of a membrane-attack-complex-inhibiting protein (MIP) from human erythrocyte membranes [Watts, Patel & Morgan (1987) Complement 4, 236] and the production of polyclonal antibodies to this protein. Here we report the identification in plasma, urine, saliva and cerebrospinal fluid of a protein immunochemically identical with the membrane-derived MIP. The protein has been isolated from plasma by immunoaffinity chromatography on an anti-(erythrocyte MIP)-Sepharose column and shown by SDS/polyacrylamide-gel electrophoresis to be of similar molecular mass to the erythrocyte protein (55 kDa non-reduced and 65 kDa under reducing conditions). Monoclonal antibodies have been raised against plasma MIP and used to establish a two-site enzyme-linked immunoadsorbent assay, enabling quantification of MIP in plasma, urine and cerebrospinal fluid. Plasma MIP, though not able to incorporate spontaneously into membranes, was deposited on heterologous and homologous erythrocyte membranes during complement activation in a C8-dependent manner. Depletion of MIP from plasma resulted in enhancement of the lytic capacity of the plasma on heterologous erythrocytes.

1992 ◽  
Vol 282 (2) ◽  
pp. 409-413 ◽  
Author(s):  
B P Morgan

Several groups have recently described the isolation of a 20 kDa membrane-attack-complex (MAC)-inhibiting protein, termed ‘CD59 antigen’, from human erythrocyte membranes. Antibodies raised against erythrocyte CD59 antigen detect antigen on the surface of many other cell types, and in some of these cells the antigen has been shown to have a molecular mass similar to that of the erythrocyte protein and to confer resistance to lysis by the MAC. A platelet-membrane form of CD59 antigen has been described and reported to be much larger than the erythrocyte protein. Here I report the isolation of CD59 antigen from platelet membranes and its molecular and functional characterization. The platelet protein is not significantly larger than the erythrocyte form and possesses similar MAC-inhibiting activity. Platelet CD59 antigen is anchored to the membrane via a glycosyl-phosphatidylinositol link, and consequently it is suggested that deficiency of this protein might be responsible for the increased thrombotic tendency observed in paroxysmal nocturnal haemoglobinuria.


1992 ◽  
Vol 284 (1) ◽  
pp. 169-176 ◽  
Author(s):  
T R Hughes ◽  
S J Piddlesden ◽  
J D Williams ◽  
R A Harrison ◽  
B P Morgan

The membrane attack complex (MAC) of complement in humans is regulated by several membrane-bound proteins; however, no such proteins have so far been described in other species. Here we report the isolation and characterization of a rat erythrocyte membrane glycoprotein of molecular mass 21 kDa which inserts into cell membranes and is a potent inhibitor of the rat MAC. This protein, here called rat inhibitory protein (RIP), was first partially purified by column chromatography from a butanol extract of rat erythrocyte membranes. Monoclonal antibodies (Mabs) were raised against RIP and used for its affinity purification. Affinity-purified RIP was shown to inhibit in a dose-dependent manner the cobra venom factor (CVF)-mediated ‘reactive’ lysis of guinea pig erythrocytes by rat complement. Conversely, the anti-RIP MAbs 6D1 and TH9 were shown to markedly enhance the CVF-mediated lysis of rat erythrocytes by rat complement. RIP acted late in the assembly of the MAC (at or after the C5b-8 stage) and was releasable from the membranes of rat erythrocytes by phosphatidylinositol-specific phospholipase C. These features, together with its size, deglycosylation pattern and N-terminal amino acid sequence, lead us to conclude that RIP is the rat homologue of the human MAC-inhibitory protein CD59 antigen.


Blood ◽  
1978 ◽  
Vol 51 (3) ◽  
pp. 385-395 ◽  
Author(s):  
J Palek ◽  
SC Liu ◽  
LM Snyder

Abstract The discocyte-echinocyte transformation and the decrease in deformability associated with red cell ATP depletion have been attributed to changes in the physical properties of spectrin and actin, membrane proteins located at the membrane-cytosol interface. We investigated the spontaneous formation of spectrin-rich complexes in human erythrocyte membranes, employing two-dimensional SDS- polyacrylamide gel electrophoresis. Membranes of red cells depleted in ATP under aerobic conditions exhibited (1) an increase in components 4.5 and 8 and globin subunits, (2) a spontaneous formation of heterodimers of spectrin 1 + 2 and spectrin 2 + component 4.9, and (3) a large molecular weight (greater than 10(6) daltons) protein complex with a high spectrin to band 3 ratio. These complexes were dissociated with dithiothreitol and were prevented by anaerobic incubation or the maintenance of red cell ATP and GSH levels with glucose, adenine, and inosine. The complexes 1 + 2 and 2 + 4.9 were also seen in acetylphenylhydrazine-treated, glucose-6-phosphate dehydrogenase- deficient fresh erythrocytes that showed marked GSH depletion but preserved greater than 70% of the original ATP level. However, membranes of these cells did not contain the greater 10(6) dalton aggregate with a high spectrin to band 3 ratio. We concluded that the formation of the latter complex results from rearrangement of spectrin and other polypeptides in membranes of ATP-depleted red cells. Under aerobic conditions, the rearranged proteins undergo spontaneous intermolecular crosslinkings through disulfide couplings.


1989 ◽  
Vol 67 (8) ◽  
pp. 411-421 ◽  
Author(s):  
Om P. Malhotra

Isolation and characterization of γ-carboxyglutamic acid (Gla) deficient prothrombins induced by Warfarin or dicoumarol are useful for studying the role of specific Gla residues in prothrombin. In addition to 7-Gla prothrombin, we have isolated two more atypical prothrombins from the barium citrate eluate, one containing 6.11, and the other, 7.85 Gla residues, presumably 6- and 8-Gla prothrombins. The actual Gla content of the 7-Gla isomer was 7.05. Each of the 6-, 7-, and 8-Gla variants showed a single component by agar or dodecyl sulfate Polyacrylamide gel electrophoresis. When agar gel electrophoresis was performed in calcium, each of the variants moved more rapidly than normal (10-Gla) prothrombin. In the presence of EDTA, the 8-Gla isomer exhibited the fastest mobility, equivalent to that of normal prothrombin, followed by 7-, and then 6-Gla variants. The physiological activities of the isomers were found to be 18 to 23% for 8-, 6 to 8% for 7-, and 2 to 3% of normal prothrombin for 6-Gla variant. Prothrombin fragment 1, derived from 8-Gla prothrombin, exhibited 23% of calcium-induced fluorescence quenching, compared with 40% for 10-Gla and 8% or less for 7- and 6-Gla fragments 1. Competition radioimmunoassay data show that calcium-dependent anti (normal) prothrombin polyclonal antibodies are not specific for 10-Gla prothrombin, since the 7- and 8-Gla isomers were able to displace radiolabeled (125I) normal prothrombin.Key words: prothrombin, blood clotting, dicoumarol, Warfarin, γ-carboxyglutamic acid, vitamin K deficiency.


1980 ◽  
Vol 187 (2) ◽  
pp. 507-513 ◽  
Author(s):  
Douglas Mauldin ◽  
Basil D. Roufogalis

Treatment of extensively washed erythrocyte membranes with 0.1mm-EDTA decreased their Mg2+-dependent, Ca2+-stimulated ATPase [(Mg2++Ca2+)-ATPase] activity. An activator released by this treatment restored the (Mg2++Ca2+)-ATPase to its original value in a Ca2+-dependent manner. This activator was different from calmodulin, as determined by a number of criteria. It was retained on an Amicon XM-100 ultrafiltration membrane (molecular-weight cut-off 100000); it appeared in the void volume of Sephadex G-100 and G-75 columns; it was not retained on a DEAE-cellulose ion-exchange column at ionic strengths similar to those used to retain calmodulin; and it maximally activated (Mg2++Ca2+)-ATPase activity less than calmodulin and at a higher Ca2+ concentration. Like calmodulin, the activator is heat-stable. The activator fraction isolated on a 2.5–15% sucrose gradient in 0.16m-KCl showed a single band of mol.wt. 63000 and no calmodulin on 10%-polyacrylamide/sodium dodecyl sulphate gels. A trace amount of calmodulin was detected in the activator fraction by radioimmunoassay (approx. 10pg/ml of ‘ghosts’), but this amount was insufficient to account for the (Mg2++Ca2+)-ATPase activation. Furthermore, calmodulin-binding protein failed to inhibit (Mg2++Ca2+)-ATPase activity by more than 10–20% in the membrane preparations from which the activator was extracted. It was concluded that erythrocyte membranes contain a (Mg2++Ca2+)-ATPase activator that may attenuate the activation of the Ca2+-transport ATPase by calmodulin.


1988 ◽  
Vol 66 (10) ◽  
pp. 1126-1133 ◽  
Author(s):  
Elena Burdett ◽  
Amira Klip

The glucose transporter of human erythrocytes is a glycoprotein of 492 amino acids with a Mr of 55 000. From hydrophobicity plots based on the transporter's amino acid sequence, it has been proposed that exofacially, there are only a segment of 34 residues and the glycosylating carbohydrate branch. To detect changes in the number of glucose transporters during metabolic regulation in intact cells, one should obtain antibodies directed to exofacial sites of the transporter. Antibodies to the purified glucose transporter (Band 4.5), intact or deglycosylated with endoglycosidase F, were raised in rabbits. These antibodies, when purified by column chromatography on protein A-Sepharose and by adsorption onto erythrocyte membranes, cross-reacted with the glycosylated glucose transporter on Western blots. The reactivity of the polyclonal antibodies with intact cells was tested by incubating these cells with the antibody, followed by a centrifugation and a subsequent reaction with 125I-labelled goat-antirabbit immunoglobulin G. Intact human erythrocytes reacted positively with the anti-Band 4.5 antibodies but not with nonimmune sera. Reaction with human erythrocytes was about 10 times greater than with pig erythrocytes, which lack glucose transporters. The reaction with intact cells was not due to contamination with broken cells since under the conditions used, broken (freeze–thawed) cells or membranes did not sediment. Reaction with human erythrocyte membranes was more than fivefold higher than with pig erythrocyte membranes. Rat L6 muscle cells reacted with anti-Band 4.5 antibodies; there were about 10 times more binding sites in any one cell in L6 cells than in human erythrocytes, roughly paralleling their relative content of glucose transporters. It is concluded that the antibody may be reacting with exofacial regions of the glucose transporter in intact cells. This suggests that the antibodies may be used to detect relative changes in glucose transporter number on the cell surface.


1989 ◽  
Vol 17 (4) ◽  
pp. 725-726
Author(s):  
MARIA J. WATTS ◽  
JOHN R. DANKERT ◽  
B. PAUL MORGAN

Author(s):  
P. Wong ◽  
A. Barbeau

SUMMARY:Proteins of human erythrocyte membranes of Friedrich's ataxia patients and controls were examined by SDS-polyacrylamide gel electrophoresis before and after reduction withβ-mercaptoethanol. No difference could be detected in the composition of their state of aggregation. The protein kinase activity of human erythrocyte membranes of eleven Friedreich's ataxia patients and six controls was determined. No difference in their protein kinase activity could be detected. These results are discussed with respect to an involvement of a generalized membrane defect in Friedreich's ataxia.


1979 ◽  
Vol 181 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Sandro Pontremoli ◽  
Franca Salamino ◽  
Bianca Sparatore ◽  
Edon Melloni ◽  
Alessandro Morelli ◽  
...  

1. The distribution of proteolytic activity in membranes from human erythrocytes and from rabbit reticulocytes and erythrocytes was investigated, after removal of leucocytes and platelets from the cell suspensions. 2. All membrane preparations displayed proteolytic activity in the acidic pH region only. Membranes from human and rabbit mature erythrocytes showed latent activity, which could be increased when extracted with a number of detergents. 3. Three active fractions were resolved either by gel chromatography of solubilized membrane extracts or by standard polyacrylamide-gel electrophoresis. The three proteinase activities (designated proteinases I, II and III) were purified from solubilized extracts of human erythrocyte membranes. 4. The relevant mol.wts. were around 80000, 40000 and 30000, respectively, and each of the three proteinases appeared to be composed of a single polypeptide chain. 5. Distinctive pH optima (in the range pH2.8–3.9) and different saturation profiles with globin as substrate were observed for proteinases I, II and III. 6. Dithioerythritol, Hg2+ and Cu2+ inhibited each of the three human enzymes, but more selective inhibitory effects were exerted by other modifiers of proteolytic enzymes and by haemin. Similar effects were observed with the three proteinases from rabbit cells. 7. The activity of the three human proteinases seems to be restricted to naturally occurring protein substrates, although with poor specificity, and none of them was active on synthetic substrates. 8. Digestion of globin by each of the three enzymes yielded similar polypeptide fragments in all cases, this indicating an endopeptidase type of activity.


Sign in / Sign up

Export Citation Format

Share Document