scholarly journals 4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2

1991 ◽  
Vol 274 (3) ◽  
pp. 833-842 ◽  
Author(s):  
H H Locher ◽  
T Leisinger ◽  
A M Cook

Cell-free extracts of Comamonas testosteroni T-2 grown in toluene-p-sulphonate/salts medium catalyse the conversion of p-sulphobenzoate (PSB) into protocatechuate and sulphite by an NADH-requiring and Fe2(+)-activated dioxygenase. Anion-exchange chromatography of extracts yielded red (A) and yellow (B) protein fractions, both of which were necessary for dioxygenative activity. Further purification of each fraction by hydrophobic interaction chromatography and gel filtration led to two homogeneous protein components (A and B), which together converted 1 mol each of PSB, O2 and NADH into 1 mol each of protocatechuate, sulphite and, presumably, NAD+. The system was named 4-sulphobenzoate 3,4-dioxygenase (PSB dioxygenase system). Monomeric component B (Mr 36,000) was determined to be a reductase that contained 1 mol of FMN and about 2 mol each of iron and inorganic sulphur per mol. This component transferred electrons from NADH to the oxygenase component (A) or to, e.g., cytochrome c. Homodimeric component A (subunit Mr 50,000) of the PSB dioxygenase system contained one [2Fe-2S] centre per subunit and its u.v.-visible-absorption spectrum corresponded to a Rieske-type iron-sulphur centre. The requirement for activation by iron was interpreted as partial loss of mononuclear iron during purification of component A. Component A could be reduced by dithionite or by NADH plus catalytic amounts of component B. The PSB dioxygenase system displayed a narrow substrate range: none of 18 sulphonated or non-sulphonated analogues of PSB showed significant substrate-dependent O2 uptake. The physical properties of the PSB dioxygenase system resemble those of other bacterial multi-component dioxygenase, especially phthalate dioxygenase. However, it differs from most characterized systems in its overall reaction; the product is a vicinal diphenol, and not a dihydrodiol.

1989 ◽  
Vol 67 (6) ◽  
pp. 260-270 ◽  
Author(s):  
Gwyneth DeVries ◽  
Elaine D. Fraser ◽  
Michael P. Walsh

Protein kinase C was purified from the cytosolic fraction of chicken gizzard by Ca2+-dependent hydrophobic interaction chromatography, anion-exchange chromatography, and hydrophobic chromatography. The molecular weight was estimated as 61 500 by gel filtration and 80 000 by denaturing gel electrophoresis, indicating that the native enzyme is a monomer. Using the mixed micellar assay, with histone III-S as the substrate, protein kinase C required Ca2+, phospholipid, and diacylglycerol for activity, with half-maximal activation at ~5 × 10−7 M Ca2+ in the presence of L-α-phosphatidyl-L-serine and 1,2-diolein. No activation by Ca2+ was observed in the absence of diacylglycerol. Protein kinase C requires free Mg2+, in addition to the MgATP2− substrate, for activity. The Km for ATP was determined to be 20 μM. Activity was sensitive to ionic strength, with half-maximal inhibition at 70 mM NaCl. Using the liposomal assay, phosphorylation of platelet P47 protein and smooth muscle vinculin was more strongly dependent on Ca2+ and lipids than was histone phosphorylation. Partial digestion of protein kinase C with trypsin yielded a constitutively active fragment. A heat-stable inhibitor and three major endogenous protein substrates of protein kinase C were also detected in chicken gizzard smooth muscle.Key words: protein kinase C, gizzard, inhibitor, endogenous substrates.


2012 ◽  
Vol 3 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Abd El Aziem Farouk ◽  
Ralf Greiner ◽  
Anis Shobirin Meor Hussin

An extracellular phytate-degrading enzyme produced by Enterobacter sakazakii ASUIA279 was purified to homogeneity using FPLC anion exchange chromatography and gel filtration. The enzyme was purified about 66-fold with a recovery of 27%. Its molecular mass was estimated to be 43 kDa by SDS-PAGE. The Michaelis constant (KM) and turnover number (kcat ) for sodium phytate at pH 5.0 and 50°C were calculated from the Lineweaver-Burk plot to be 760 µM and 4.14s-1, respectively. The enzyme showed narrow substrate specificity and not phytate, but GTP was dephosphorylated with the highest relative rate of hydrolysis. However, according to the kcat/KM values, phytate was concluded to be the in vivo substrate of the enzyme. Optimal activity was determined at pH 4.5 and 45-55°C. The enzyme was strongly inhibited by Fe3+, Cu2+, Zn2+, molybdate, vanadate, fluoride and phosphate (1 mM).


1998 ◽  
Vol 180 (24) ◽  
pp. 6668-6673 ◽  
Author(s):  
Chang-Jun Cha ◽  
Ronald B. Cain ◽  
Neil C. Bruce

ABSTRACT Rhodococcus rhodochrous N75 is able to metabolize 4-methylcatechol via a modified β-ketoadipate pathway. This organism has been shown to activate 3-methylmuconolactone by the addition of coenzyme A (CoA) prior to hydrolysis of the butenolide ring. A lactone-CoA synthetase is induced by growth of R. rhodochrous N75 on p-toluate as a sole source of carbon. The enzyme has been purified 221-fold by ammonium sulfate fractionation, hydrophobic chromatography, gel filtration, and anion-exchange chromatography. The enzyme, termed 3-methylmuconolactone-CoA synthetase, has a pH optimum of 8.0, a native M r of 128,000, and a subunitM r of 62,000, suggesting that the enzyme is homodimeric. The enzyme is very specific for its 3-methylmuconolactone substrate and displays little or no activity with other monoene and diene lactone analogues. Equimolar amounts of these lactone analogues brought about less than 30% (most brought about less than 15%) inhibition of the CoA synthetase reaction with its natural substrate.


Nematology ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Yong Seong Lee ◽  
Muhammad Anees ◽  
Yun Serk Park ◽  
Sun Bae Kim ◽  
Woo Jin Jung ◽  
...  

The root-knot nematodes, Meloidogyne spp., cause serious diseases in various plants and their chemical control may lead to environmental problems. Therefore, alternative control measures against the phytopathogenic nematodes are being sought. One of the potential targets against Meloidogyne spp. may be the chitinolysis and degradation of nematode eggs. Therefore, in the present study, a chitinolytic and nematicidal strain of Lysobacter capsici YS1215 was isolated from an agricultural field in Korea. The aim of this study was to purify chitinase secreted by L. capsici YS1215 and investigate its nematicidal role against Meloidogyne incognita. The chitinase secreted by L. capsici YS1215 was purified by protein precipitation with 80% ammonium sulphate, anion-exchange chromatography with DEAE-cellulose and gel-filtration chromatography with Sephadex G-100. By chitinase-active staining of the purified enzyme, a single band was obtained with an estimated molecular mass of 43.6 kDa. The optimal pH and optimal temperature for the highest chitinase activity were 6.0 and 40°C, respectively. The purified chitinase degraded the chitin layer of the eggshells and significantly reduced hatch of second-stage juveniles. The activity of chitinase secreted by L. capsici YS1215 was not affected by CoCl2, MnCl2, MgCl2, CuSO4, CaCl2 or EDTA. The purified enzyme could also hydrolyse swollen chitin, glycol chitin, glycol chitosan and chitin powder. Thus, the role of chitinase secreted by L. capsici YS1215 against Meloidogyne spp. may be useful for further development of a biocontrol agent.


1994 ◽  
Vol 49 (1-2) ◽  
pp. 26-32 ◽  
Author(s):  
Alfred Baumert ◽  
Walter Maier ◽  
Detlef Gröger ◽  
Rainer Deutzmann

Acridone synthase has been purified from cell suspension cultures of Ruta graveolens using a combination of gel filtration and ion exchange chromatography. The purified enzyme has an apparent molecular weight of 69 kDa on gel filtration and a subunit structure on SDS-PAGE of 40 kDa. The apparent Km-values are 10.64 μM and 32.8 μM for N-methylanthraniloyl-CoA and malonyl-CoA, respectively. Tryptic digestion of the homogeneous acridone synthase was performed. Seven of the peptides were chosen for microsequencing. The homology of the amino acid sequences from this particular polypeptide and corresponding peptides from chalcone synthase 3 from garden pea amounted to 76%.


2000 ◽  
Vol 66 (5) ◽  
pp. 1871-1876 ◽  
Author(s):  
María J. Lorite ◽  
Jörg Tachil ◽  
Juán Sanjuán ◽  
Ortwin Meyer ◽  
Eulogio J. Bedmar

ABSTRACT Bradyrhizobium japonicum strain 110spc4 was capable of chemolithoautotrophic growth with carbon monoxide (CO) as a sole energy and carbon source under aerobic conditions. The enzyme carbon monoxide dehydrogenase (CODH; EC 1.2.99.2 ) has been purified 21-fold, with a yield of 16% and a specific activity of 58 nmol of CO oxidized/min/mg of protein, by a procedure that involved differential ultracentrifugation, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis and had a molecular mass of 230,000 Da. The 230-kDa enzyme was composed of large (L; 75-kDa), medium (M; 28.4-kDa), and small (S; 17.2-kDa) subunits occurring in heterohexameric (LMS)2 subunit composition. The 75-kDa polypeptide exhibited immunological cross-reactivity with the large subunit of the CODH of Oligotropha carboxidovorans. The B. japonicum enzyme contained, per mole, 2.29 atoms of Mo, 7.96 atoms of Fe, 7.60 atoms of labile S, and 1.99 mol of flavin. Treatment of the enzyme with iodoacetamide yielded di(carboxamidomethyl)molybdopterin cytosine dinucleotide, identifying molybdopterin cytosine dinucleotide as the organic portion of the B. japonicum CODH molybdenum cofactor. The absorption spectrum of the purified enzyme was characteristic of a molybdenum-containing iron-sulfur flavoprotein.


1980 ◽  
Vol 187 (3) ◽  
pp. 647-653 ◽  
Author(s):  
K Arakawa ◽  
M Yuki ◽  
M Ikeda

Tryptensin, a vasopressor substance generated from human plasma protein fraction IV-4 by trypsin, has been isolated and the amino acid composition analysed. The procedures used for the isolation were: (a) adsorption of the formed tryptensin on Dowex 50W (X2; NH4+ form); (b) gel filtration through Sephadex G-25; (c) cation-exchange chromatography on CM-cellulose; (d) anion-exchange chromatography on DEAE-cellulose; (e) re-chromatography on CM-cellulose; (f) gel filtration on Bio-Gel P-2; (g) partition chromatography on high-pressure liquid chromatography. The homogeneity of the isolated tryptensin was confirmed by thin-layer chromatography and thin-layer electrophoresis. The amino acid analysis of the hydrolysate suggested the following proportional composition: Asp, 1; Val, 1; Ile, 1; Tyr, 1; Phe, 1; His, 1; Arg, 1; Pro, 1. This composition is identical with that of human angiotensin.


1993 ◽  
Vol 289 (2) ◽  
pp. 453-461 ◽  
Author(s):  
M Hrmova ◽  
G B Fincher

Three (1->3)-beta-D-glucan glucanohydrolase (EC 3.2.1.39) isoenzymes GI, GII and GIII were purified from young leaves of barley (Hordeum vulgare) using (NH4)2SO4 fractional precipitation, ion-exchange chromatography, chromatofocusing and gel-filtration chromatography. The three (1->3)-beta-D-glucanases are monomeric proteins of apparent M(r)32,000 with pI values in the range 8.8-10.3. N-terminal amino-acid-sequence analyses confirmed that the three isoenzymes represent the products of separate genes. Isoenzymes GI and GII are less stable at elevated temperatures and are active over a narrower pH range than is isoenzyme GIII, which is a glycoprotein containing 20-30 mol of hexose equivalents/mol of enzyme. The preferred substrate for the enzymes is laminarin from the brown alga Laminaria digitata, an essentially linear (1->3)-beta-D-glucan with a low degree of glucosyl substitution at 0-6 and a degree of polymerization of approx. 25. The three enzymes are classified as endohydrolases, because they yield (1->3)-beta-D-oligoglucosides with degrees of polymerization of 3-8 in the initial stages of hydrolysis of laminarin. Kinetic analyses indicate apparent Km values in the range 172-208 microM, kcat. constants of 36-155 s-1 and pH optima of 4.8. Substrate specificity studies show that the three isoenzymes hydrolyse substituted (1->3)-beta-D-glucans with degrees of polymerization of 25-31 and various high-M(r), substituted and side-branched fungal (1->3;1->6)-beta-D-glucans. However, the isoenzymes differ in their rates of hydrolysis of a (1->3;1->6)-beta-D-glucan from baker's yeast and their specific activities against laminarin vary significantly. The enzymes do not hydrolyse (1->3;1->4)-beta-D-glucans, (1->6)-beta-D-glucan, CM-cellulose, insoluble (1->3)-beta-D-glucans or aryl beta-D-glycosides.


Sign in / Sign up

Export Citation Format

Share Document