scholarly journals Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli

1991 ◽  
Vol 276 (2) ◽  
pp. 541-546 ◽  
Author(s):  
K Aisaka ◽  
A Igarashi ◽  
K Yamaguchi ◽  
T Uwajima

N-Acetylneuraminate lyase produced by Escherichia coli was purified and crystallized from a genetically engineered strain (E. coli SF8/pNAL1). The enzyme showed apparent molecular masses of 105,000 Da on gel filtration and 35,000 Da on SDS/PAGE, suggesting that the enzyme is a trimer. The apparent optimum pH and temperature were found to be 6.5-7.0 and 80 degrees C respectively. The Km values for N-acetylneuraminate and N-glycollylneuraminate were 3.3 and 3.3 mM respectively. The enzyme was inhibited by reduction with NaBH4 in the presence of the substrate, indicating that the enzyme belongs to the Schiff-base-forming Class I aldolases. The enzyme was strongly inhibited by Cu2+ ions, p-chloromercuribenzoate and N-bromosuccinimide, and also inhibited competitively by the reaction product, pyruvate, and its structurally related compounds, dihydroxyacetone and DL-glyceraldehyde.

1999 ◽  
Vol 181 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hisayo Ono ◽  
Kazuhisa Sawada ◽  
Nonpanga Khunajakr ◽  
Tao Tao ◽  
Mihoko Yamamoto ◽  
...  

ABSTRACT 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Km s of 9.1 mM forl-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.


Author(s):  
Nguyen Thi My Trinh ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Background: The recombinant human granulocyte colony stimulating factor con-jugated with polyethylene glycol (PEGylated GCSF) has currently been used as an efficient drug for the treatment of neutropenia caused by chemotherapy due to its long circulating half-life. Previous studies showed that Granulocyte Colony Stimula-ting Factor (GCSF) could be expressed as non-classical Inclusion Bodies (ncIBs), which contained likely correctly folded GCSF inside at low temperature. Therefore, in this study, a simple process was developed to produce PEGylated GCSF from ncIBs. Methods: BL21 (DE3)/pET-GCSF cells were cultured in the LiFlus GX 1.5 L bioreactor and the expression of GCSF was induced by adding 0.5 mM IPTG. After 24 hr of fermentation, cells were collected, resuspended, and disrupted. The insoluble fraction was obtained from cell lysates and dissolved in 0.1% N-lauroylsarcosine solution. The presence and structure of dissolved GCSF were verified using SDS-PAGE, Native-PAGE, and RP-HPLC analyses. The dissolved GCSF was directly used for the con-jugation with 5 kDa PEG. The PEGylated GCSF was purified using two purification steps, including anion exchange chromatography and gel filtration chromatography. Results: PEGylated GCSF was obtained with high purity (~97%) and was finally demonstrated as a form containing one GCSF molecule and one 5 kDa PEG molecule (monoPEG-GCSF). Conclusion: These results clearly indicate that the process developed in this study might be a potential and practical approach to produce PEGylated GCSF from ncIBs expressed in Escherichia coli (E. coli).


1996 ◽  
Vol 38 (6) ◽  
pp. 401-406 ◽  
Author(s):  
Yano Tomomasa ◽  
Cleide Ferreira Catani ◽  
Michiko Arita ◽  
Takeshi Honda ◽  
Toshio Miwatani

The mannose-resistant hemagglutinating factor (HAF) was extracted and purified from a diffuse adherent Escherichia coli (DAEC) strain belonging to the classic enteropathogenic E. coli (EPEC) serotype (0128). The molecular weight of HAF was estimated to be 18 KDa by SDS-PAGE and 66 KDa by Sephadex G100, suggesting that the native form of HAF consists of 3-4 monomeric HAF. Gold immunolabeling with specific HAF antiserum revealed that the HAF is not a rigid structure like fimbriae on the bacterial surface. The immunofluorescence test using purified HAF on HeLa cells, in addition to the fact that the HAF is distributed among serotypes of EPEC, suggests that HAF is a possible adhesive factor of DAEC strains


1978 ◽  
Vol 169 (3) ◽  
pp. 633-641 ◽  
Author(s):  
S A Baldwin ◽  
R N Perham ◽  
D Stribling

A new form of the class-II D-fructose 1,6-bisphosphate aldolase (EC 4.1.2.13) of Escherichia coli (Crookes' strain) was isolated from an extract of glycerol-grown bacteria. It has a higher molecular weight (approx. 80000)than previous preparations of the enzyme and closely resembles the typical class-II aldolase from yeast in size and amino acid composition. On the other hand, its kinetic behaviour is not typical of a class-II aldolase. The enzyme has no requirement for thiol compounds either for stability or activity, added K+ ions have no effect, and the optimum pH for the cleavage activity is unusually high. The class-II enzymes from the prokaryote E. coli and the eukaryote yeast show no immunological identity. However, the similarity of their structures suggests that they have evolved from a common ancestor.


1995 ◽  
Vol 308 (3) ◽  
pp. 733-741 ◽  
Author(s):  
S M Pitson ◽  
R J Seviour ◽  
B M McDougall ◽  
J R Woodward ◽  
B A Stone

Three (1-->3)-beta-D-glucanases (GNs) were isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. Homogeneity of the purified proteins was confirmed by SDS/PAGE, isoelectric focusing and N-terminal amino acid sequencing. All three GNs (GN I, II and III) are non-glycosylated, monomeric proteins with apparent molecular masses, estimated by SDS/PAGE, of 81, 85 and 89 kDa respectively. pI values for the three enzymes are 5.3, 5.1, and 4.4 respectively. The pH optimum for GN I is 6.5, and 5.0 for GN II and III. All three purified enzymes displayed stability over the pH range 4.5-10.0. Optimum activities for GN I, II and III were recorded at 65, 55 and 60 degrees C respectively, with both GN II and III having short-term stability up to 50 degrees C and GN I up to 55 degrees C. The purified GNs have high specificity for (1-->3)-beta-linkages and hydrolysed a range of (1-->3)-beta- and (1-->3)(1-->6)-beta-D-glucans, with laminarin from Laminaria digitata being the most rapidly hydrolysed substrate of those tested. K(m) values for GN I, II, and III against L. digitata laminarin were 0.1, 0.23 and 0.22 mg/ml respectively. D-Glucono-1,5-lactone does not inhibit any of the three GNs, some metals ions are mild inhibitors, and N-bromosuccinimide and KMnO4 are strong inhibitors. All three GNs acted in an exo-hydrolytic manner, determined by the release of alpha-glucose as the initial and major product of hydrolysis of (1-->3)-beta-D-glucans, and confirmed by viscometric analysis and the inability to cleave periodate-oxidized laminarin, and may be classified as (1-->3)-beta-D-glucan glucohydrolases (EC 3.2.1.58).


1999 ◽  
Vol 65 (7) ◽  
pp. 3244-3247 ◽  
Author(s):  
Ke-xue Huang ◽  
Frederick B. Rudolph ◽  
George N. Bennett

ABSTRACT A gene encoding a putative 150-amino-acid methylglyoxal synthase was identified in Clostridium acetobutylicum ATCC 824. The enzyme was overexpressed in Escherichia coli and purified. Methylglyoxal synthase has a native molecular mass of 60 kDa and an optimum pH of 7.5. The Km andV max values for the substrate dihydroxyacetone phosphate were 0.53 mM and 1.56 mmol min−1μg−1, respectively. When E. coli glycerol dehydrogenase was coexpressed with methylglyoxal synthase in E. coli BL21(DE3), 3.9 mM 1,2-propanediol was produced.


2020 ◽  
Vol 10 (3) ◽  
pp. 289-293
Author(s):  
Ace Baehaki ◽  
Arif Hidayat ◽  
Nuni Gofar ◽  
Rodiana Nopianti

The purpose of this research was to produce and characterizing crude protease from RS1 isolate of swamp plant silage. The optimum production time of RS1 isolate was 40 h. The optimum pH and temperature of protease from RS1 isolate were 10 and 45℃, respectively.  Ion Mg3+ increased RS1 protease whereas ion of Na+, K+, Fe2+, and Zn2+ inhibited protease from RS1 isolate. Study on the effect of metals ion indicated that protease from RS1 isolate was metaloenzyme. Based analysis on SDS-PAGE, the molecular weight of RS1 protease had 12 bands with molecular weights ranging from 34.75 kDa to 263.53 kDa.


2009 ◽  
Vol 55 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Nahed Fakhfakh ◽  
Safia Kanoun ◽  
Laila Manni ◽  
Moncef Nasri

A novel feather-degrading bacterium was isolated from a polluted river and identified as Bacillus licheniformis RPk. The isolate exhibited high proteinase production when grown in chicken-feather media. Complete feather degradation was achieved during cultivation. Maximum protease activity (4150 U/mL with casein as a substrate and 37.35 U/mL with keratin as a substrate) was obtained when the strain was grown in a medium containing 7.5 g/L chicken feathers, 2 g/L yeast extract, 0.5 g/L NaCl, 0.1 g/L MgSO4·7H2O, 0.7 g/L KH2PO4, and 1.4 g/L K2HPO4for 48 h with agitation of 200 rev/min at 37 °C. The major protease produced by B. licheniformis RPk was purified to homogeneity by a 3-step procedure. The molecular mass of the purified enzyme was estimated to be 32 kDa by SDS–PAGE and gel filtration. The optimum pH and temperature for the caseinolytic activity were around 11.0 and 65 °C, respectively. The optimum pH and temperature for the keratinolytic activity were 9.0 and 60 °C, respectively. The activity of the enzyme was totally lost in the presence of phenylmethylsulfonyl fluoride, which suggests that the purified enzyme is a serine protease. The thermostability of the enzyme was considerably enhanced in the presence of Ca2+at temperatures >50 °C. The kerRP gene, which encodes the keratinolytic protease, was isolated, and its DNA sequence was determined. The deduced amino acid sequence revealed that the keratinase KerRP differs from KerA of B. licheniformis PWD-1, subtilisin Carlsberg, and keratinase of B. licheniformis by 2, 4, and 62 amino acids, respectively.


2012 ◽  
Vol 87 (2) ◽  
pp. 212-221 ◽  
Author(s):  
M. Dmitryjuk ◽  
M. Dopieralska ◽  
E. Łopieńska-Biernat ◽  
R.J. Frączek

AbstractTrehalose 6-phosphate (T6P) synthase (TPS;EC2.4.1.15) was isolated from muscles ofAscaris suumby ammonium sulphate fractionation, ion-exchange DEAE SEPHACELTManion exchanger column chromatography and Sepharose 6B gel filtration. On sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), 265-fold purified TPS exhibited a molecular weight of 66 kDa. The optimum pH and temperature of the purified enzyme were 3.8–4.2 and 35°C, respectively. The isoelectric point (pI) of TPS was pH 5.4. The studied TPS was not absolutely substrate specific. Besides glucose 6-phosphate, the enzyme was able to use fructose 6-phosphate as an acceptor of glucose. TPS was activated by 10 mMMgCl2, 10 mMCaCl2and 10 mMNaCl. In addition, it was inhibited by ethylenediaminetetra-acetic acid (EDTA), KCl, FeCl3and ZnCl2. Two genes encoding TPS were isolated and sequenced from muscles of the parasite. Complete coding sequences fortps1(JF412033.2) andtps2(JF412034.2) were 3917 bp and 3976 bp, respectively. Translation products (AEX60788.1 and AEX60787.1) showed expression to the glucosyltransferase-GTB-type superfamily.


1995 ◽  
Vol 50 (11-12) ◽  
pp. 796-805 ◽  
Author(s):  
Josef Vinnemeier ◽  
Wolfgang Dröge-Laser ◽  
Elfriede K Pistorius ◽  
Inge Broer

Abstract A purification scheme for the enzyme phosphinothricin-N-acetyltransferase (PAT) originating from Streptomyces viridochromogenes {pat-gene product from Streptomyces virido­chromogenes) and mediating herbicide resistance to transgenic plants was developed. The enzyme was isolated from a transformed and overproducing Escherichia coli strain. With a combination of ammonium sulfate fractionation, chromatography on DEAE-Sephadex A50-, Phenylsepharose-, Hydroxylapatite-and FPLC-Superose 12-columns it was possible to obtain PAT which was at least 90 % homogeneous on the basis of SDS-PAGE. The properties of the isolated PAT were compared with the properties of PAT from S. hygroscopicus (bar-gene product from S. hygroscopicus) previously isolated and characterisized by Botterman, J., Gossele, V., Thoen, C., Lauwereys, M. (1991), Gene 102, 33-37. Differences were observed in the molecular masses of the two native enzymes (PAT from S. viridochrogenes being a dimer of 40 kD and PAT from S. hygroscopicus being a monomer of 21 kD), and in the temperature sensitivity of the two enzymes (the PAT from S. viridochromogenes being slightly more temperature stable than PAT from S. hygroscopicus). However, since the pat and the bar-gene are to 85 % homologous, substantial similarities exist between the two enzymes especially in the kinetic values and the substrate specificity. The isolated S. virido­chromogenes PAT did not acetylate putative substrates present in the plant cell. Antibodies were raised against the isolated protein. This antiserum was able to detect PAT in transgenic plants and therefore is suitable to analyse the fate of the protein in such plants under various stress conditions.


Sign in / Sign up

Export Citation Format

Share Document