scholarly journals Effects of changes in cell volume on the rates of glutamine and alanine release from rat skeletal muscle in vitro

1991 ◽  
Vol 276 (2) ◽  
pp. 559-561 ◽  
Author(s):  
M Parry-Billings ◽  
S J Bevan ◽  
E Opara ◽  
E A Newsholme

The effect of changes in cell volume on the rates of release of glutamine and alanine from muscle and on the concentrations of these amino acids in muscle were investigated by using an isolated preparation of rat skeletal muscle incubated in the presence of hypo- and hyper-osmotic media. Changes in cell volume were associated with changes in the rates of release of glutamine and alanine from muscle: incubation in hypo-osmotic medium decreased the rates of release of glutamine and alanine, and incubation in hyperosmotic medium increased these rates. These changes were rapidly reversed by a change in osmoticity of the medium. Despite marked changes in cell volume, the concentrations of these amino acids in muscle were maintained. It is suggested that cell volume may play a role in the regulation of amino acid metabolism in skeletal muscle.

2020 ◽  
Vol 26 (4) ◽  
pp. 277-287
Author(s):  
Christine Leary ◽  
Roger G Sturmey

Abstract The pattern of metabolism by early embryos in vitro has been linked to a range of phenotypes, including viability. However, the extent to which metabolic function of embryos is modified by specific methods used during ART has yet to be fully described. This study has sought to determine if the mode of fertilization used to create embryos affects subsequent embryo metabolism of substrates. A metabolic profile, including consumption of key substrates and the endogenous triglyceride content of individual IVF and ICSI supernumerary embryos, was assessed and compared. Embryo development and quality was also recorded. All embryos were donated at a single clinical IVF center, on Day 5, from 36 patients aged 18–38 years, The data revealed that consumption of glucose and pyruvate, and production of lactate, did not differ between embryos created by IVF or ICSI. Similarly, the mode of insemination did not impact on the triglyceride content of embryos. However, ICSI-derived embryos displayed a more active turnover of amino acids (P = 0.023), compared to IVF embryos. The specific amino acids produced in higher quantities from ICSI compared to IVF embryos were aspartate (P = 0.016), asparagine (P = 0.04), histidine (P = 0.021) and threonine (P = 0.009) while leucine consumption was significantly lower (P = 0.04). However, importantly neither individual nor collective differences in amino acid metabolism were apparent for sibling oocytes subjected to either mode of fertilization. Embryo morphology (the number of top grade embryos) and development (proportion reaching the blastocyst stage) were comparable in patients undergoing IVF and ICSI. In conclusion, the microinjection of spermatozoa into oocytes does not appear to have an impact on subsequent metabolism and viability. Observed differences in amino acid metabolism may be attributed to male factor infertility of the patients rather than the ICSI procedure per se.


1998 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Y. G. Jung ◽  
T. Sakata ◽  
E. S. Lee ◽  
Y. Fukui

The uptake and synthesis of 19 amino acids by fresh or frozen–thawed bovine blastocysts produced by parthenogenesis (PT) or in vitro fertilization (IVF) were compared in the present study. Fresh blastocysts, 180 h after IVF or PT activation, and frozen–thawed blastocysts, 168 h old and cultured for 12 h post-thawing, were cultured in synthetic oviduct fluid medium (SOFM) containing polyvinyl alcohol (PVA) with both essential and non-essential amino acids (EAA and NEAA, respectively) (Medium 1: M1) or SOFM containing PVA with only EAA (Medium 2: M2). In Experiment 1, when fresh or frozen–thawed PT blastocysts were cultured in M1, the uptake of glutamate (in fresh only), aspartate and arginine, and the synthesis of glutamine and alanine were significantly enhanced. In the culture with M2, serine, asparagine, glutamate, glutamine, glycine, arginine and alanine were significantly taken up. It was found that the glutamine concentrations was significantly higher (P < 0.001) in the culture medium drops containing embryos than in the drops without embryos. In Experiment 2, when PT blastocysts were cultured in M1, the uptake of aspartate and synthesis of alanine were greater (P < 0.01) than those by IVF blastocysts. When M2 was used, a significant (P < 0.01) production of serine, asparagine, glutamate, glutamine and alanine, and the uptake of arginine by PT blastocysts were observed. In Experiment 3, when IVF blastocysts were cultured in M1, fresh blastocysts depleted more aspartate and glutamate, and produced more glutamine and alanine than frozen–thawed blastocysts. When cultured in M2, frozen–thawed blastocysts depleted more threonine (P < 0.01) than fresh blastocysts. These results indicate that the uptake and synthesis of amino acids were different in fresh or frozen–thawed bovine blastocysts derived from PT or IVF. These differences in amino acid metabolism may be related to the viability of the blastocysts.


1990 ◽  
Vol 268 (3) ◽  
pp. 799-802 ◽  
Author(s):  
A E Tedstone ◽  
V Ilic ◽  
D H Williamson

Measurements of the tissue accumulation in vivo and in vitro by hepatocytes and mammary-gland acini of alpha-amino[1-14C]isobutyrate ([1-14C]AIB) were compared in virgin and lactating rats. The results indicate the existence of a reciprocal relationship between mammary gland and liver for AIB accumulation that is dependent on the lactational and the nutritional state of the rat. This suggests that amino acids are preferentially directed to the mammary gland during active lactation.


2002 ◽  
Vol 27 (6) ◽  
pp. 646-662 ◽  
Author(s):  
Donald K. Layman

Exercise produces changes in protein and amino acid metabolism. These changes include degradation of the branched-chain amino acids, production of alanine and glutamine, and changes in protein turnover. One of the amino acid most affected by exercise is the branched-chain amino acid leucine. Recently, there has been an increased understanding of the role of leucine in metabolic regulations and remarkable new findings about the role of leucine in intracellular signaling. Leucine appears to exert a synergistic role with insulin as a regulatory factor in the insulin/phosphatidylinositol-3 kinase (PI3-K) signal cascade. Insulin serves to activate the signal pathway, while leucine is essential to enhance or amplify the signal for protein synthesis at the level of peptide initiation. Studies feeding amino acids or leucine soon after exercise suggest that post-exercise consumption of amino acids stimulates recovery of muscle protein synthesis via translation regulations. This review focuses on the unique roles of leucine in amino acid metabolism in skeletal muscle during and after exercise. Key words: branched-chain amino acids, insulin, protein synthesis, skeletal muscle


2003 ◽  
Vol 15 (1) ◽  
pp. 38-43 ◽  
Author(s):  
L Pepplinkhuizen ◽  
F M M A van der Heijden ◽  
S Tuinier ◽  
W M A Verhoeven ◽  
D Fekkes

Background:The pathogenesis of atypical psychoses, in particularly those characterized by polymorphic psychopathology, is hypothesized to be related to disturbances in amino acid metabolism.Objective:In the present study, the role of the amino acid serine was investigated in patients with acute transient polymorphic psychosis.Methods:Patients were loaded with serine and with the amino acids glycine and alanine as controls and subsequently evaluated for the development of psychopathological symptoms. In addition, plasma levels of amino acids were measured.Results:In a subgroup of patients suffering from atypical psychoses, this biochemical challenge resulted in the reappearance of psychedelic symptoms in particular. Furthermore, significantly lower plasma concentrations of serine were found. In vitro experiments revealed a disturbance in the one-carbon metabolism. In another group of patients the loading provoked vegetative symptoms and fatigue.Conclusions:Disturbances in amino acid metabolism may be involved in the emergence of certain psychotic disorders.


1980 ◽  
Vol 102 (1) ◽  
pp. 91-98 ◽  
Author(s):  
William M. Pardridge ◽  
Luiza Duducgian-Vartavarian ◽  
Delia Casanello-Ertl ◽  
Michael R. Jones ◽  
Joel D. Kopple

1973 ◽  
Vol 28 (7-8) ◽  
pp. 449-451 ◽  
Author(s):  
G. Peter ◽  
H. Angst ◽  
U. Koch

Free and protein-bound amino acids in serum and scales were investigated. In serum the bound amino acids of psoriatics are significantly higher with exception of Pro, Met, Tyr and Phe in contrast to normal subjects. For free amino acids the differences between normal subjects and psoriatics found in serum and scales are not significant. Results are discussed in relation to the single amino acids and the biochemical correlations are outlined which takes the pathological process as a basis.


1971 ◽  
Vol 121 (5) ◽  
pp. 817-827 ◽  
Author(s):  
R. C. Hider ◽  
E. B. Fern ◽  
D. R. London

1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document