scholarly journals Complete nucleotide and deduced amino acid sequence of human β2-glycoprotein I

1991 ◽  
Vol 277 (2) ◽  
pp. 387-391 ◽  
Author(s):  
A Steinkasserer ◽  
C Estaller ◽  
E H Weiss ◽  
R B Sim ◽  
A J Day

The nucleotide and complete amino acid sequence for the human beta 2-glycoprotein I (beta 2I) was derived by sequencing the cDNA clone pB2I-1. In addition to the 326 amino acid residues of the mature protein this clone codes for a putative leader peptide and contains sequence representing 5′ and 3′ untranslated regions. When this amino acid sequence was compared with the previously published primary sequence, three major amino acid substitutions were found, two involving cysteine residues. These substitutions lead to a new alignment of the complement control protein (CCP) repeats present in beta 2I and a prediction of the complete disulphide bond organization. Northern-blot analysis indicates that hepatocytes are a major site of biosynthesis for this protein. A transcription signal of about 1.5 kb was detected by using RNA from HepG2 cells.

1985 ◽  
Vol 230 (1) ◽  
pp. 133-141 ◽  
Author(s):  
L P Chung ◽  
D R Bentley ◽  
K B Reid

By using synthetic oligonucleotides as probes, plasmid clones containing portions of cDNA coding for human C4b-binding protein were isolated from a liver cDNA library. The entire amino acid sequence of the C4b-binding protein can be predicted from this study of the cloned cDNA when allied to a previous sequence study at the protein level [Chung, Gagnon & Reid (1985) Mol. Immunol. 22, 427-435], in which over 55% of the amino acid sequence, including the N-terminal 62 residues, was obtained. The plasmid clones isolated allowed the unambiguous determination of 1717 nucleotides of cDNA sequence between the codon for the 32nd amino acid in the sequence of C4b-binding protein and the 164th nucleotide in the 3′ non-translated region. The sequence studies show that the secreted form of C4b-binding protein, found in plasma, is composed of chains of apparent Mr 70 000 that contains 549 amino acid residues. Examination of the protein and cDNA sequence results show that there are at least two polymorphic sites in the molecule. One is at position 44, which can be glutamine or threonine, and the other is at position 309, which can be tyrosine or histidine. Northern-blot analysis indicated that the mRNA for C4b-binding protein is approx. 2.5 kilobases long. The N-terminal 491 amino acids of C4b-binding protein can be divided into eight internal homologous regions, each approx. 60 amino acids long, which can be aligned by the presence in each region of four half-cystine, one tryptophan and several other conserved residues. These regions in C4b-binding protein are homologous with the three internal-homology regions that have been reported to be present within the Ba region of the complement enzyme factor B and also to the internal-homology regions found in the non-complement beta 2-glycoprotein I.


1989 ◽  
Vol 54 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Ivan Kluh ◽  
Ladislav Morávek ◽  
Manfred Pavlík

Cyanogen bromide fragment CB5 represents the region of the polypeptide chain of hemopexin between the fourth and fifth methionine residue (residues 232-352). It contains 120 amino acid residues in the following sequence: Arg-Cys-Ser-Pro-His-Leu-Val-Leu-Ser-Ala-Leu-Thr-Ser-Asp-Asn-His-Gly-Ala-Thr-Tyr-Ala-Phe-Ser-Gly-Thr-His-Tyr-Trp-Arg-Leu-Asp-Thr-Ser-Arg-Asp-Gly-Trp-His-Ser-Trp-Pro-Ile-Ala-His-Gln-Trp-Pro-Gln-Gly-Pro-Ser-Ala-Val-Asp-Ala-Ala-Phe-Ser-Trp-Glu-Glu-Lys-Leu-Tyr-Leu-Val-Gln-Gly-Thr-Gln-Val-Tyr-Val-Phe-Leu-Thr-Lys-Gly-Gly-Tyr-Thr-Leu-Val-Ser-Gly-Tyr-Pro-Lys-Arg-Leu-Glu-Lys-Glu-Val-Gly-Thr-Pro-His-Gly-Ile-Ile-Leu-Asp-Ser-Val-Asp-Ala-Ala-Phe-Ile-Cys-Pro-Gly-Ser-Ser-Arg-Leu-His-Ile-Met. The sequence was derived from the data on peptides prepared by cleavage of fragment CB5 by mild acid hydrolysis, by trypsin and chymotrypsin.


1997 ◽  
Vol 75 (6) ◽  
pp. 687-696 ◽  
Author(s):  
Tamo Fukamizo ◽  
Ryszard Brzezinski

Novel information on the structure and function of chitosanase, which hydrolyzes the beta -1,4-glycosidic linkage of chitosan, has accumulated in recent years. The cloning of the chitosanase gene from Streptomyces sp. strain N174 and the establishment of an efficient expression system using Streptomyces lividans TK24 have contributed to these advances. Amino acid sequence comparisons of the chitosanases that have been sequenced to date revealed a significant homology in the N-terminal module. From energy minimization based on the X-ray crystal structure of Streptomyces sp. strain N174 chitosanase, the substrate binding cleft of this enzyme was estimated to be composed of six monosaccharide binding subsites. The hydrolytic reaction takes place at the center of the binding cleft with an inverting mechanism. Site-directed mutagenesis of the carboxylic amino acid residues that are conserved revealed that Glu-22 and Asp-40 are the catalytic residues. The tryptophan residues in the chitosanase do not participate directly in the substrate binding but stabilize the protein structure by interacting with hydrophobic and carboxylic side chains of the other amino acid residues. Structural and functional similarities were found between chitosanase, barley chitinase, bacteriophage T4 lysozyme, and goose egg white lysozyme, even though these proteins share no sequence similarities. This information can be helpful for the design of new chitinolytic enzymes that can be applied to carbohydrate engineering, biological control of phytopathogens, and other fields including chitinous polysaccharide degradation. Key words: chitosanase, amino acid sequence, overexpression system, reaction mechanism, site-directed mutagenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patamalai Boonserm ◽  
Songchan Puthong ◽  
Thanaporn Wichai ◽  
Sajee Noitang ◽  
Pongsak Khunrae ◽  
...  

AbstractIt is important to understand the amino acid residues that govern the properties of the binding between antibodies and ligands. We studied the binding of two anti-norfloxacins, anti-nor 132 and anti-nor 155, and the fluoroquinolones norfloxacin, enrofloxacin, ciprofloxacin, and ofloxacin. Binding cross-reactivities tested by an indirect competitive enzyme-linked immunosorbent assay indicated that anti-nor 132 (22–100%) had a broader range of cross-reactivity than anti-nor 155 (62–100%). These cross-reactivities correlated with variations in the numbers of interacting amino acid residues and their positions. Molecular docking was employed to investigate the molecular interactions between the fluoroquinolones and the monoclonal antibodies. Homology models of the heavy chain and light chain variable regions of each mAb 3D structure were docked with the fluoroquinolones targeting the crucial part of the complementarity-determining regions. The fluoroquinolone binding site of anti-nor 155 was a region of the HCDR3 and LCDR3 loops in which hydrogen bonds were formed with TYR (H:35), ASN (H:101), LYS (H:106), ASN (L:92), and ASN (L:93). These regions were further away in anti-nor 132 and could not contact the fluoroquinolones. Another binding region consisting of HIS (L:38) and ASP (H:100) was found for norfloxacin, enrofloxacin, and ciprofloxacin, whereas only ASP (H:100) was found for ofloxacin.


2002 ◽  
Vol 76 (11) ◽  
pp. 5829-5834 ◽  
Author(s):  
Yoshio Mori ◽  
Mohammed Ali Borgan ◽  
Naoto Ito ◽  
Makoto Sugiyama ◽  
Nobuyuki Minamoto

ABSTRACT Avian rotavirus NSP4 glycoproteins expressed in Escherichia coli acted as enterotoxins in suckling mice, as did mammalian rotavirus NSP4 glycoproteins, despite great differences in the amino acid sequences. The enterotoxin domain of PO-13 NSP4 exists in amino acid residues 109 to 135, a region similar to that reported in SA11 NSP4.


1996 ◽  
Vol 271 (1) ◽  
pp. C54-C60 ◽  
Author(s):  
M. Kimura ◽  
T. T. Andersen ◽  
J. W. Fenton ◽  
W. F. Bahou ◽  
A. Aviv

We tested the hypothesis that the inhibition of thrombin-induced platelet activation by plasmin is mediated via the enzymatic action of plasmin on the functional thrombin receptor. We monitored the binding of the anti-thrombin receptor antibody [anti-TR-(34-46)] to platelets; this binding is sensitive to the cleavage of the thrombin receptor at amino acid residues Arg-41 to Ser-42. Plasmin inhibited anti-TR-(34-46) binding in dose- and time-dependent manners. The inactive synthetic peptide with the amino acid sequence 40-55 of the thrombin receptor (D-FPRSFLLRNPNDKYEPF) was similarly cleaved by thrombin and plasmin to an active peptide (SFLLRNPNDKYEPF) that produced robust cytosolic Ca2+ responses. At high concentrations, plasmin itself can activate platelets. We explored this effect with the use of anti-TR-(1-160). This antibody abolished the cytosolic Ca2+ responses to thrombin and to the thrombin receptor-activating peptide SFLLRN but did not attenuate the plasmin-induced cytosolic Ca2+ response. Thus plasmin inhibits thrombin-evoked platelet activation by cleaving the thrombin receptor, but the plasmin-induced cytosolic Ca2+ response is not due to the generation of the tethered peptide of the thrombin receptor.


1992 ◽  
Vol 286 (3) ◽  
pp. 761-769 ◽  
Author(s):  
F P Barry ◽  
J U Gaw ◽  
C N Young ◽  
P J Neame

The hyaluronan-binding region (HABR) was prepared from pig laryngeal cartilage aggrecan and the amino acid sequence was determined. The HABR had two N-termini: one N-terminal sequence was Val-Glu-Val-Ser-Glu-Pro (367 amino acids in total), and a second N-terminal sequence (Ala-Ile-Ser-Val-Glu-Val; 370 amino acids in total) was found to arise due to alternate cleavage by the signal peptidase. The N-linked oligosaccharides were analysed by examining their reactivity with a series of lectins. It was found that the N-linked oligosaccharide on loop A was of the mannose type, while that on loop B was of the complex type. No reactivity was detected between the N-linked oligosaccharide on loop B' and any of the lectins. The location of keratan sulphate (KS) in the HABR was determined by Edman degradation of the immobilized KS-containing peptide. The released amino acid derivatives were collected and tested for the presence of epitope to antibody 5-D-4. On the basis of 5-D-4 reactivity and sequencing yields, the KS chains are attached to threonine residues 352 and 357. There is no KS at threonine-355. This site is not in fact in G1, but about 16 amino acid residues into the interglobular domain. Comparison of the structure of the KS chain from the HABR and from the KS domain of pig laryngeal cartilage aggrecan was made by separation on polyacrylamide gels of the oligosaccharides arising from digestion with keratanase. Comparison of the oligosaccharide maps suggests that the KS chains from both parts of the aggrecan molecule have the same structure.


1986 ◽  
Vol 235 (3) ◽  
pp. 895-898 ◽  
Author(s):  
M S López de Haro ◽  
A Nieto

An almost full-length cDNA coding for pre-uteroglobin from hare lung was cloned and sequenced. The derived amino acid sequence indicated that hare pre-uteroglobin contained 91 amino acids, including a signal peptide of 21 residues. Comparison of the nucleotide sequence of hare pre-uteroglobin cDNA with that previously reported for the rabbit gene indicated five silent point substitutions and six others leading to amino acid changes in the coding region. The untranslated regions of both pre-uteroglobin mRNAs were very similar. The amino acid changes observed are discussed in relation to the different progesterone-binding abilities of both homologous proteins.


1974 ◽  
Vol 143 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Michael D. Scawen ◽  
Donald Boulter

The amino acid sequence of plastocyanin from marrow was determined. It consists of a single polypeptide chain of mol.wt. 10284 containing 99 amino acid residues. The sequence was determined by using a Beckman 890C automatic sequencer and by dansyl–phenyl isothiocyanate analysis of peptides obtained by the enzymic digestion of purified CNBr fragments. The sequence is in good agreement with the amino acid composition, except that fewer residues of glutamic acid were found in the sequence than were suggested by the composition. Evidence for histidine-37 was weaker than for the rest of the sequence. A ‘tree’ of phylogenetic affinities was constructed by using several higher-plant plastocyanin sequences.


Sign in / Sign up

Export Citation Format

Share Document