scholarly journals Ursodeoxycholic acid increases low-density lipoprotein binding, uptake and degradation in isolated hamster hepatocytes

1991 ◽  
Vol 280 (3) ◽  
pp. 589-598 ◽  
Author(s):  
B Bouscarel ◽  
H Fromm ◽  
S Ceryak ◽  
M M Cassidy

Ursodeoxycholic acid (UDCA), in contrast to both chenodeoxycholic acid (CDCA), its 7 alpha-epimer, and lithocholic acid, enhanced receptor-dependent low-density lipoprotein (LDL) uptake and degradation in isolated hamster hepatocytes. The increase in cell-associated LDL was time- and concentration-dependent, with a maximum effect observed at approx. 60 min with 1 mM-UDCA. This increase was not associated with a detergent effect of UDCA, as no significant modifications were observed either in the cellular release of lactate dehydrogenase or in Trypan Blue exclusion. The effect of UDCA was not due to a modification of the LDL particle, but rather was receptor-related. UDCA (1 mM) maximally increased the number of 125I-LDL-binding sites (Bmax.) by 35%, from 176 to 240 ng/mg of protein, without a significant modification of the binding affinity. Furthermore, following proteolytic degradation of the LDL receptor with Pronase, specific LDL binding decreased to the level of non-specific binding, and the effect of UDCA was abolished. Conversely, the trihydroxy 7 beta-hydroxy bile acid ursocholic acid and its 7 alpha-epimer, cholic acid, induced a significant decrease in LDL binding by approx. 15%. The C23 analogue of UDCA (nor-UDCA) and CDCA did not affect LDL binding. On the other hand, UDCA conjugated with either glycine (GUDCA) or taurine (TUDCA), increased LDL binding to the same extent as did the free bile acid. The half maximum time (t1/2) to reach the full effect was 1-2 min for UDCA and TUDCA, while GUDCA had a much slower t1/2 of 8.3 min. Ketoconazole (50 microM), an antifungal agent, increased LDL binding, but this effect was not additive when tested in the presence of 0.7 mM-UDCA. The results of the studies indicate that, in isolated hamster hepatocytes, the UDCA-induced increase in receptor-dependent LDL binding and uptake represents a direct effect of this bile acid. The action of the bile acid is closely related to its specific structural conformation, since UDCA and its conjugates are the only bile acids shown to express this ability thus far. However, certain agents other than bile acids, such as ketoconazole, have a similar effect. Finally, the studies suggest that the recruitment of LDL receptors from a latent pool in the hepatocellular membrane may be the mechanism by which UDCA exerts its direct effect.

1989 ◽  
Vol 263 (1) ◽  
pp. 255-260 ◽  
Author(s):  
A M Salter ◽  
N Ekins ◽  
M al-Seeni ◽  
D N Brindley ◽  
B Middleton

1. We have previously shown that the capacity for specific binding of human 125I-labelled low-density lipoprotein (LDL) to rat hepatocytes increases with time in culture [Salter, Bugaut, Saxton, Fisher & Brindley (1987) Biochem. J. 247, 79-84]. 2. In the present study we show that this up-regulation is accompanied by a rise in the cholesterol ester content of the cells. 3. Inhibition of cholesterol esterification with the drug 58-035 (Sandoz) significantly decreases the time-dependent ‘up-regulation’ of LDL receptors. 4. Incubation of hepatocytes with LDL itself has little effect on subsequent LDL binding. However, when cholesterol esterification is inhibited, incubation with LDL decreases binding below that attained with the drug alone. 5. Inhibition of cholesterol synthesis with Lovastatin significantly increases LDL binding and antagonizes the effect of 58-035. 6. We conclude that in hepatocytes the rate of cellular cholesterol esterification can become the major determinant of LDL-receptor activity.


Lipids ◽  
1995 ◽  
Vol 30 (7) ◽  
pp. 607-617 ◽  
Author(s):  
Bernard Bouscarel ◽  
Susan Caryak ◽  
Sander J. Robins ◽  
Hans Fromm

1979 ◽  
Vol 83 (3) ◽  
pp. 588-594 ◽  
Author(s):  
H S Kruth ◽  
J Avigan ◽  
W Gamble ◽  
M Vaughan

The effect of cell density on low density lipoprotein (LDL) binding by cultured human skin fibroblasts was investigated. Bound LDL was visualized by indirect immunofluorescence. Cellular lipid and cholesterol were monitored by fluorescence in cells stained with phosphine 3R and filipin, respectively. LDL binding and lipid accumulation were compared in cells in stationary and exponentially growing cultures, in sparsely and densely plated cultures, in wounded and non-wounded areas of stationary cultures, and in stationary cultures with and without the addition of lipoprotein-deficient serum. We conclude that LDL binding and cholesterol accumulation induced by LDL are influenced by cell density. It appears that, compared to rapidly growing cells, quiescent (noncycling) human fibroblasts exhibit fewer functional LDL receptors.


Biochemistry ◽  
2000 ◽  
Vol 39 (35) ◽  
pp. 10627-10633 ◽  
Author(s):  
Olav M. Andersen ◽  
Peter A. Christensen ◽  
Lisa L. Christensen ◽  
Christian Jacobsen ◽  
Søren K. Moestrup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document