scholarly journals Molecular-dynamics investigation of molecular flexibility in ligand binding

1992 ◽  
Vol 288 (1) ◽  
pp. 109-116 ◽  
Author(s):  
B Mao

The molecular flexibility of an inhibitor in ligand-binding process has been investigated by the mass-weighted molecular-dynamics simulation, a computational method adopted from the standard molecular-dynamics simulation and one by which the conformational space of a biomolecular system over potential energy barriers can be sampled effectively. The bimolecular complex of the aspartyl proteinase from Rhizopus chinensis, rhizopuspepsin, and an octapeptide inhibitor was previously studied in a mass-weighted molecular-dynamics simulation; the study has been extended for investigating the molecular flexibility in ligand binding. A series of mass-weighted molecular-dynamics simulations was carried out in which libration of the inhibitor dihedral angles was parametrically controlled, and threshold values of dihedral angle libration amplitudes were observed from monitoring the sampling of the enzyme binding pocket by the inhibitor in the simulations. The computational results are consistent with the general notion of molecular-flexibility requirement for ligand binding; the freedom of dihedral rotations of side-chain groups was found to be particularly important for ligand binding. Thus the critical degree of molecular flexibility which would contribute to effective enzyme inhibition can be obtained precisely from the modified molecular-dynamics simulations; the procedure described herein represents a first step toward providing quantitative measures of such a molecular-flexibility index for inhibitor molecules that have been otherwise targeted for optimal protein-ligand interactions.

RSC Advances ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 5507-5515
Author(s):  
Liang Song ◽  
Feng-Qi Zhao ◽  
Si-Yu Xu ◽  
Xue-Hai Ju

The bimolecular and fused ring compounds are found in the high-temperature pyrolysis of NONA using ReaxFF molecular dynamics simulations.


2015 ◽  
Vol 17 (45) ◽  
pp. 30307-30317 ◽  
Author(s):  
Sathish Kumar Mudedla ◽  
Ettayapuram Ramaprasad Azhagiya Singam ◽  
Kanagasabai Balamurugan ◽  
Venkatesan Subramanian

The complexation of siRNA with positively charged gold nanoclusters has been studied using classical molecular dynamics simulations.


CrystEngComm ◽  
2018 ◽  
Vol 20 (25) ◽  
pp. 3569-3580 ◽  
Author(s):  
Xiaoxiao Sui ◽  
Yongjian Cheng ◽  
Naigen Zhou ◽  
Binbing Tang ◽  
Lang Zhou

Based on the Stillinger–Weber potential, molecular dynamics simulations of the solidification processes of multicrystalline silicon were carried out.


RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 13008-13017 ◽  
Author(s):  
Jun Liu ◽  
Haixiao Wan ◽  
Huanhuan Zhou ◽  
Yancong Feng ◽  
Liqun Zhang ◽  
...  

The formation mechanism of the bound rubber in elastomer nanocomposites using the coarse-grained molecular-dynamics simulations.


2020 ◽  
Vol 22 (3) ◽  
pp. 1154-1167 ◽  
Author(s):  
Khair Bux ◽  
Syed Tarique Moin

Molecular dynamics simulations were applied to an isolated cholesterol immersed in four different solvents of varying polarity, such as water, methanol, dimethyl sulfoxide and benzene, to gain insights into the structural and dynamical properties.


2018 ◽  
Vol 18 (20) ◽  
pp. 1755-1768 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Taj Mohammad ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Protein-ligand interaction is an imperative subject in structure-based drug design and protein function prediction process. Molecular docking is a computational method which predicts the binding of a ligand molecule to the particular receptor. It predicts the binding pose, strength and binding affinity of the molecules using various scoring functions. Molecular docking and molecular dynamics simulations are widely used in combination to predict the binding modes, binding affinities and stability of different protein-ligand systems. With advancements in algorithms and computational power, molecular dynamics simulation is now a fundamental tool to investigative bio-molecular assemblies at atomic level. These methods in association with experimental support have been of great value in modern drug discovery and development. Nowadays, it has become an increasingly significant method in drug discovery process. In this review, we focus on protein-ligand interactions using molecular docking, virtual screening and molecular dynamics simulations. Here, we cover an overview of the available methods for molecular docking and molecular dynamics simulations, and their advancement and applications in the area of modern drug discovery. The available docking software and their advancement including application examples of different approaches for drug discovery are also discussed. We have also introduced the physicochemical foundations of molecular docking and simulations, mainly from the perception of bio-molecular interactions.


1998 ◽  
Vol 53 (8) ◽  
pp. 655-658
Author(s):  
Masanori Sakurai ◽  
Ryuzo Takagi ◽  
Ashok K. Adyaa ◽  
Marcelle Gaune-Escard

Abstract Molecular dynamics simulations of molten DyCl3-NaCl were carried out at liquidus temperatures of the phase diagram. The chemical potential and the activity of NaCl was successfully estimated with the method proposed by Powles et al., which requires only positional data of the ions at the temperatures in question.


1992 ◽  
Vol 278 ◽  
Author(s):  
A.M. Mazzone

AbstractThis work presents a molecular dynamics simulation method designed to describe the processes of electron and lattice relaxation taking place in typical cascade volumes formed by high-energy implants. The simulation method is based on classical mechanics and includes the motions of electrons and nuclei. The results are in agreement with experiments.


2014 ◽  
Vol 16 (39) ◽  
pp. 21706-21716 ◽  
Author(s):  
Manoj Mandal ◽  
Chaitali Mukhopadhyay

All atom molecular dynamics simulations have been used to explore the atomic detail mechanism of guanidinium induced unfolding of the protein ubiquitin.


2021 ◽  
Vol 23 (37) ◽  
pp. 21262-21271
Author(s):  
L. Dai ◽  
P. P. Rutkevych ◽  
S. Chakraborty ◽  
G. Wu ◽  
J. Ye ◽  
...  

We used the united-atom scheme to build three types of crystalline structures for octacosane (C28H58) and carried out molecular dynamics simulations to investigate their phase properties.


Sign in / Sign up

Export Citation Format

Share Document