scholarly journals Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli

1994 ◽  
Vol 298 (1) ◽  
pp. 189-195 ◽  
Author(s):  
C Fraipont ◽  
M Adam ◽  
M Nguyen-Distèche ◽  
W Keck ◽  
J Van Beeumen ◽  
...  

Replacement of the 36 and 56 N-terminal amino acid residues of the 588-amino-acid-residue membrane-bound penicillin-binding protein 3 (PBP3) of Escherichia coli by the OmpA signal peptide allows export of F37-V577 PBP3 and G57-V577 PBP3 respectively into the periplasm. The modified ftsI genes were placed under the control of the fused lpp promoter and lac promoter/operator; expression of the truncated PBP3s was optimized by varying the copy number of the recombinant plasmids and the amount of LacI repressor, and export was facilitated by increasing the SecB content of the producing strain. The periplasmic PBP3s (yield 8 mg/l of culture) were purified to 70% protein homogeneity. They require the presence of 0.25 M NaCl to remain soluble. Like the membrane-bound PBP3, they undergo processing by elimination of the C-terminal decapeptide I578-S588, they bind penicillin in a 1:1 molar ratio and they catalyse hydrolysis and aminolysis of acyclic thioesters that are analogues of penicillin. The membrane-anchor-free PBP3s have ragged N-termini. The G57-V577 PBP3, however, is less prone to proteolytic degradation than the F37-V577 PBP3.

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 215
Author(s):  
Dan-Ping Zhang ◽  
Xiao-Ran Jing ◽  
An-Wen Fan ◽  
Huan Liu ◽  
Yao Nie ◽  
...  

L-amino acid deaminases (LAADs) are membrane flavoenzymes that catalyze the deamination of neutral and aromatic L-amino acids to α-keto acids and ammonia. LAADs can be used to develop many important biotechnological applications. However, the transmembrane α-helix of LAADs restricts its soluble active expression and purification from a heterologous host, such as Escherichia coli. Herein, through fusion with the maltose-binding protein (MBP) tag, the recombinant E. coli BL21 (DE3)/pET-21b-MBP-PmLAAD was constructed and the LAAD from Proteus mirabilis (PmLAAD) was actively expressed as a soluble protein. After purification, the purified MBP-PmLAAD was obtained. Then, the catalytic activity of the MBP-PmLAAD fusion protein was determined and compared with the non-fused PmLAAD. After fusion with the MBP-tag, the catalytic efficiency of the MBP-PmLAAD cell lysate was much higher than that of the membrane-bound PmLAAD whole cells. The soluble MBP-PmLAAD cell lysate catalyzed the conversion of 100 mM L-phenylalanine (L-Phe) to phenylpyruvic acid (PPA) with a 100% yield in 6 h. Therefore, the fusion of the MBP-tag not only improved the soluble expression of the PmLAAD membrane-bound protein, but also increased its catalytic performance.


1987 ◽  
Vol 241 (1) ◽  
pp. 229-235 ◽  
Author(s):  
P E Butler ◽  
M J McKay ◽  
J S Bond

Meprin is an intrinsic protein of the brush border, a specialized plasma membrane, of the mouse kidney. It is a metalloendopeptidase that contains 1 mol of zinc and 3 mol of calcium per mol of the 85,000-Mr subunit. The enzyme is isolated, and active, as a tetramer. The behaviour of the enzyme on SDS/polyacrylamide gels in the presence and absence of beta-mercaptoethanol indicates that the subunits are of the same Mr (approx. 85,000) and held together by intersubunit S–S bridges. Eight S-carboxymethyl-L-cysteine residues were detected after reduction of the enzyme with beta-mercaptoethanol and carboxymethylation with iodoacetate. The enzyme is a glycoprotein and contains approx. 18% carbohydrate. Most of the carbohydrate is removed by endoglycosidase F, indicating that the sugar residues are N-linked. The isoelectric point of the enzyme is between pH 4 and 5, and the purified protein yields a pattern of evenly spaced bands in this range on isoelectric focusing. The peptide-bond specificity of the enzyme has been determined by using the oxidized B-chain of insulin as substrate. In all, 15 peptide degradation products were separated by h.p.l.c. and analysed for their amino acid content and N-terminal amino acid residue. The prevalent peptide-bond cleavages were between Gly20 and Glu21, Phe24 and Phe25 and between Phe25 and Tyr26. Other sites of cleavage were Leu6-Cysteic acid7, Ala14-Leu15, His10-Leu11, Leu17-Val18, Gly8-Ser9, Leu15-Tyr16, His5-Leu6. These results indicate that meprin has a preference for peptide bonds that are flanked by hydrophobic or neutral amino acid residues, but hydrolysis is not limited to these bonds. The ability of meprin to hydrolyse peptide bonds between small neutral and negatively charged amino acid residues distinguishes it from several other metalloendopeptidases.


1992 ◽  
Vol 282 (3) ◽  
pp. 781-788 ◽  
Author(s):  
B Granier ◽  
C Duez ◽  
S Lepage ◽  
S Englebert ◽  
J Dusart ◽  
...  

As derived from gene cloning and sequencing, the 489-amino-acid DD-peptidase/penicillin-binding protein (PBP) produced by Actinomadura R39 has a primary structure very similar to that of the Escherichia coli PBP4 [Mottl, Terpstra & Keck (1991) FEMS Microbiol. Lett. 78, 213-220]. Hydrophobic-cluster analysis of the two proteins shows that, providing that a large 174-amino-acid stretch is excluded from the analysis, the bulk of the two polypeptide chains possesses homologues of the active-site motifs and secondary structures found in the class A beta-lactamase of Streptomyces albus G of known three-dimensional structure. The 174-amino-acid insert occurs at equivalent places in the two PBPs, between helices alpha 2 and alpha 3, away from the active site. Such an insert is unique among the penicilloyl serine transferases. It is proposed that the Actinomadura R39 PBP and E. coli PBP4 form a special class, class C, of low-Mr PBPs/DD-peptidases. A vector has been constructed and introduced by electrotransformation in the original Actinomadura R39 strain, allowing high-level expression and secretion of the DD-peptidase/PBP (250 mg.l-1). The gene encoding the desired protein is processed differently in Actinomadura R39 and Streptomyces lividans. Incorrect processing in Streptomyces lividans leads to a secreted protein which is inert in terms of DD-peptidase activity and penicillin-binding capacity.


2001 ◽  
Vol 360 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Qian HAN ◽  
Jianmin FANG ◽  
Jianyong LI

The present study describes the isolation of a protein from Escherichia coli possessing kynurenine aminotransferase (KAT) activity and its identification as aspartate aminotransferase (AspAT). KAT catalyses the transamination of kynurenine and 3-hydroxykynurenine to kynurenic acid and xanthurenic acid respectively, and the enzyme activity can be easily detected in E. coli cells. Separation of the E. coli protein possessing KAT activity through various chromatographic steps led to the isolation of the enzyme. N-terminal sequencing of the purified protein determined its first 10 N-terminal amino acid residues, which were identical with those of the E. coli AspAT. Recombinant AspAT (R-AspAT), homologously expressed in an E. coli/pET22b expression system, was capable of catalysing the transamination of both l-kynurenine (Km = 3mM; Vmax = 7.9μmol·min−1·mg−1) and 3-hydroxy-dl-kynurenine (Km = 3.7mM; Vmax = 1.25μmol·min−1·mg−1) in the presence of pyruvate as an amino acceptor, and exhibited its maximum activity at temperatures between 50–60°C and at a pH of approx. 7.0. Like mammalian KATs, R-AspAT also displayed high glutamine transaminase K activity when l-phenylalanine was used as an amino donor (Km = 8mM; Vmax = 20.6μmol·min−1·mg−1). The exact match of the first ten N-terminal amino acid residues of the KAT-active protein with that of AspAT, in conjunction with the high KAT activity of R-AspAT, provides convincing evidence that the identity of the E. coli protein is AspAT.


1991 ◽  
Vol 280 (2) ◽  
pp. 463-469 ◽  
Author(s):  
A el Kharroubi ◽  
P Jacques ◽  
G Piras ◽  
J Van Beeumen ◽  
J Coyette ◽  
...  

The penicillin-resistant Enterococcus hirae R40 has a typical profile of membrane-bound penicillin-binding proteins (PBPs) except that the 71 kDa PBP5 of low penicillin affinity represents about 50% of all the PBPs present. Water-soluble tryptic-digest peptides were selectively produced from PBP5, their N-terminal regions were sequenced and synthetic oligonucleotides were used as primers to generate a 476 bp DNA fragment by polymerase chain reaction. On the basis of these data, the PBP5-encoding gene was cloned in Escherichia coli by using pBR322 as vector. The gene, included in a 7.1 kb insert, had the information for a 678-amino acid-residue protein. PBP5 shows similarity, in the primary structure, with the high-molecular-mass PBPs of class B. In particular, amino acid alignment of the enterococcal PBP5 and the methicillin-resistant staphylococcal PBP2′ generates scores that are 30, for the N-terminal domains, and 53, for the C-terminal domains, standard deviations above that expected for a run of 20 randomized pairs of proteins having the same amino acid compositions as the two proteins under consideration.


1986 ◽  
Vol 238 (2) ◽  
pp. 475-483 ◽  
Author(s):  
K Duncan ◽  
S Chaudhuri ◽  
M S Campbell ◽  
J R Coggins

The enzyme 3-dehydroquinase was purified in milligram quantities from an overproducing strain of Escherichia coli. The amino acid sequence was deduced from the nucleotide sequence of the aroD gene and confirmed by determining the amino acid composition of the overproduced enzyme and its N-terminal amino acid sequence. The complete polypeptide chain consists of 240 amino acid residues and has a calculated subunit Mr of 26,377. Transcript mapping revealed that aroD is a typical monocistronic gene.


Sign in / Sign up

Export Citation Format

Share Document