scholarly journals Effects of site-specific mutagenesis of tyrosine 105 in a class A β-lactamase

1994 ◽  
Vol 303 (2) ◽  
pp. 555-558 ◽  
Author(s):  
W A Escobar ◽  
J Miller ◽  
A L Fink

Tyr-105 is a conserved residue in the Class A beta-lactamases and is in close proximity to the active-site. Tyr-105 in beta-lactamase from Bacillus licheniformis was converted into Phe by site-directed mutagenesis. This mutation caused no significant effect on the structure of the enzyme and had only small effects on the catalytic properties. In particular, in comparison to the wild-type, kcat. for benzylpenicillin was increased slightly, whereas it was decreased slightly for several other substrates. For each substrate examined, Km increased 3-4-fold in the mutant compared with the wild-type enzyme. Examination of the effect of pH on the catalytic reaction revealed only small perturbations in the pK values for the acidic and basic limbs of the kcat./Km pH profiles due to the mutation. Overall effects of the Y105F substitution on the catalytic efficiency for different penicillin and cephalosporin substrates ranged from 14% to 56% compared with the wild-type activity. We conclude that Tyr-105 is not an essential residue for beta-lactamase catalysis, but does contribute to substrate binding.

1991 ◽  
Vol 278 (3) ◽  
pp. 673-678 ◽  
Author(s):  
J Brannigan ◽  
A Matagne ◽  
F Jacob ◽  
C Damblon ◽  
B Joris ◽  
...  

The lysine-234 residue is highly conserved in beta-lactamases and in nearly all active-site-serine penicillin-recognizing enzymes. Its replacement by a histidine residue in the Streptomyces albus G class A beta-lactamase yielded an enzyme the pH-dependence of which was characterized by the appearance of a novel pK, which could be attributed to the newly introduced residue. At low pH, the kcat, value for benzylpenicillin was as high as 50% of that of the wild-type enzyme, demonstrating that an efficient active site was maintained. Both kcat. and kcat/Km dramatically decreased above pH 6 but the decrease in kcat./Km could not be attributed to larger Km values. Thus a positive charge on the side chain of residue 234 appears to be more essential for transition-state stabilization than for initial recognition of the substrate ground state.


1993 ◽  
Vol 293 (1) ◽  
pp. 195-201 ◽  
Author(s):  
J M Wilkin ◽  
M Jamin ◽  
B Joris ◽  
J M Frere

The role of residue Asn-161 in the interaction between the Streptomyces R61 DD-peptidase and various substrates or beta-lactam inactivators was probed by site-directed mutagenesis. The residue was successively replaced by serine and alanine. In the first case, acylation rates were mainly affected with the peptide and ester substrates but not with the thiol-ester substrates and beta-lactams. However, the deacylation rates were decreased 10-30-fold with the substrates yielding benzoylglycyl and benzoylalanyl adducts. The Asn161Ala mutant was more generally affected, although the acylation rates with cefuroxime and cefotaxime remained similar to those observed with the wild-type enzyme. Surprisingly, the deacylation rates of the benzoylglycyl and benzoylalanyl adducts were very close to those observed with the wild-type enzyme. The results also indicate that the interaction with the peptide substrate and the transpeptidation reaction were more sensitive to the mutations than the other reactions studied. The results are discussed and compared with those obtained with the Asn-132 mutants of a class A beta-lactamase.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


2012 ◽  
Vol 78 (11) ◽  
pp. 3880-3884 ◽  
Author(s):  
Yu-Ri Lim ◽  
Soo-Jin Yeom ◽  
Deok-Kun Oh

ABSTRACTA triple-site variant (W17Q N90A L129F) of mannose-6-phosphate isomerase fromGeobacillus thermodenitrificanswas obtained by combining variants with residue substitutions at different positions after random and site-directed mutagenesis. The specific activity and catalytic efficiency (kcat/Km) forl-ribulose isomerization of this variant were 3.1- and 7.1-fold higher, respectively, than those of the wild-type enzyme at pH 7.0 and 70°C in the presence of 1 mM Co2+. The triple-site variant produced 213 g/literl-ribose from 300 g/literl-ribulose for 60 min, with a volumetric productivity of 213 g liter−1h−1, which was 4.5-fold higher than that of the wild-type enzyme. Thekcat/Kmand productivity of the triple-site variant were approximately 2-fold higher than those of theThermus thermophilusR142N variant of mannose-6-phosphate isomerase, which exhibited the highest values previously reported.


2005 ◽  
Vol 187 (21) ◽  
pp. 7543-7545 ◽  
Author(s):  
Chew Ling Tan ◽  
Chew Chieng Yeo ◽  
Hoon Eng Khoo ◽  
Chit Laa Poh

ABSTRACT xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (k cat/Km ) on Y181F towards 3-methylgentisate than that of the wild-type enzyme.


2013 ◽  
Vol 79 (13) ◽  
pp. 4072-4077 ◽  
Author(s):  
Xuguo Duan ◽  
Jian Chen ◽  
Jing Wu

ABSTRACTPullulanase (EC 3.2.1.41) is a well-known starch-debranching enzyme. Its instability and low catalytic efficiency are the major factors preventing its widespread application. To address these issues, Asp437 and Asp503 of the pullulanase fromBacillus deramificanswere selected in this study as targets for site-directed mutagenesis based on a structure-guided consensus approach. Four mutants (carrying the mutations D503F, D437H, D503Y, and D437H/D503Y) were generated and characterized in detail. The results showed that the D503F, D437H, and D503Y mutants had an optimum temperature of 55°C and a pH optimum of 4.5, similar to that of the wild-type enzyme. However, the half-lives of the mutants at 60°C were twice as long as that of the wild-type enzyme. In addition, the D437H/D503Y double mutant displayed a larger shift in thermostability, with an optimal temperature of 60°C and a half-life at 60°C of more than 4.3-fold that of the wild-type enzyme. Kinetic studies showed that theKmvalues for the D503F, D437H, D503Y, and D437H/D503Y mutants decreased by 7.1%, 11.4%, 41.4%, and 45.7% and theKcat/Kmvalues increased by 10%, 20%, 140%, and 100%, respectively, compared to those of the wild-type enzyme. Mechanisms that could account for these enhancements were explored. Moreover, in conjunction with the enzyme glucoamylase, the D503Y and D437H/D503Y mutants exhibited an improved reaction rate and glucose yield during starch hydrolysis compared to those of the wild-type enzyme, confirming the enhanced properties of the mutants. The mutants generated in this study have potential applications in the starch industry.


2006 ◽  
Vol 188 (17) ◽  
pp. 6179-6183 ◽  
Author(s):  
Jung-Kul Lee ◽  
Ee-Lui Ang ◽  
Huimin Zhao

ABSTRACT Molecular modeling and mutational analysis (site-directed mutagenesis and saturation mutagenesis) were used to probe the molecular determinants of the substrate specificity of aminopyrrolnitrin oxygenase (PrnD) from Pseudomonas fluorescens Pf-5. There are 17 putative substrate-contacting residues, and mutations at two of the positions, positions 312 and 277, could modulate the enzyme substrate specificity separately or in combination. Interestingly, several of the mutants obtained exhibited higher catalytic efficiency (approximately two- to sevenfold higher) with the physiological substrate aminopyrrolnitrin than the wild-type enzyme exhibited.


1992 ◽  
Vol 288 (3) ◽  
pp. 1045-1051 ◽  
Author(s):  
S J Thornewell ◽  
S G Waley

The substrate-induced inactivation of beta-lactamase I from Bacillus cereus 569/H has been studied. Both the wild-type enzyme and mutants have been used. The kinetics follow a branched pathway of the type recently analysed [Waley (1991) Biochem. J. 279, 87-94]. The substrate cloxacillin (a penicillin) formed an acyl-enzyme (characterized by m.s.), and it was probably the instability of this intermediate that brought about inactivation. A disulphide bond was introduced into beta-lactamase I (the wild-type enzyme lacks this bond) by site-directed mutagenesis: Ala-77 and Ala-123 were replaced by cysteine. Spontaneous oxidation yielded the disulphide. The activity of this newly cross-linked enzyme was a little diminished, but the stability towards inactivation by cloxacillin was not increased. A second mutant of beta-lactamase I was studied: this mutant lacked the first 17 residues, i.e. the first alpha-helix. The mutant had reduced activity towards ordinary (non-inactivating) substrates and no hydrolysis of cloxacillin could be detected. These mutant enzymes were expressed in Bacillus subtilis, and were purified from the extracellular medium.


2012 ◽  
Vol 78 (21) ◽  
pp. 7519-7526 ◽  
Author(s):  
Haiquan Yang ◽  
Long Liu ◽  
Mingxing Wang ◽  
Jianghua Li ◽  
Nam Sun Wang ◽  
...  

ABSTRACTThis work aims to improve the oxidative stability of alkaline amylase fromAlkalimonas amylolyticathrough structure-based site-directed mutagenesis. Based on an analysis of the tertiary structure, five methionines (Met 145, Met 214, Met 229, Met 247, and Met 317) were selected as the mutation sites and individually replaced with leucine. In the presence of 500 mM H2O2at 35°C for 5 h, the wild-type enzyme and the M145L, M214L, M229L, M247L, and M317L mutants retained 10%, 28%, 46%, 28%, 72%, and 43% of the original activity, respectively. Concomitantly, the alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant were also improved. The pH stability of the mutants (M145L, M214L, M229L, and M317L) remained unchanged compared to that of the wild-type enzyme, while the stable pH range of the M247L mutant was extended from pH 7.0 to 11.0 for the wild type to pH 6.0 to 12.0 for the mutant. The wild-type enzyme lost its activity after incubation at 50°C for 2 h, and the M145L, M214L, M229L, and M317L mutants retained less than 14% of the activity, whereas the M247L mutant retained 34% of the activity under the same conditions. Compared to the wild-type enzyme, thekcatvalues of the M145L, M214L, M229L, and M317L mutants decreased, while that of the M247L mutant increased slightly from 5.0 × 104to 5.6 × 104min−1. The mechanism responsible for the increased oxidative stability, alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant was further analyzed with a structure model. The combinational mutants were also constructed, and their biochemical properties were characterized. The resistance of the wild-type enzyme and the mutants to surfactants and detergents was also investigated. Our results indicate that the M247L mutant has great potential in the detergent and textile industries.


1994 ◽  
Vol 304 (1) ◽  
pp. 289-293 ◽  
Author(s):  
T J Puranen ◽  
M H Poutanen ◽  
H E Peltoketo ◽  
P T Vihko ◽  
R K Vihko

Several amino acid residues (Cys54, Tyr155, His210, His213 and His221) at a putative catalytic site of human 17 beta-hydroxysteroid dehydrogenase type 1 were mutated to Ala. Replacement of His221 by Ala remarkably reduced the catalytic activity, which resulted from a change of both the Km and the Vmax. values of the enzyme. Compared with the wild-type enzyme, the catalytic efficiency of the His221-->Ala mutant was reduced 20-fold for the oxidative reaction and 11-fold for the reductive reaction. With similar mutations at His210 or His213, no notable effects on the catalytic properties of the enzyme were detected. However, a simultaneous mutation of these amino acid residues decreased the Vmax. values of both oxidation and reduction by about 50% from those measured for the wild-type enzyme. Although Cys54 has been localized in the cofactor-binding region of the enzyme, a Cys54-->Ala mutation did not lead to changes in the enzymic activity. The most dramatic effects on the catalytic properties of the enzyme were achieved by mutating Tyr155, which resulted in an almost completely inactivation of the enzyme. The decreased enzymic activities of the Tyr155-->Ala, His210-->Ala + His213-->Ala and His221-->Ala mutations were also reflected in a reduced immunoreactivity of the enzymes. The results thus suggest that the lower catalytic efficiency of the mutant enzymes is due to an exchange of catalytically important amino acid residues and/or remarkable alterations in the three-dimensional structure of the enzyme. The recently detected polymorphisms (Ala237<-->Val and Ser312<-->Gly) were not found to affect either the catalytic or the immunological properties of the type 1 enzyme.


Sign in / Sign up

Export Citation Format

Share Document