scholarly journals Modulation of phosphoenolpyruvate carboxykinase mRNA levels by the hepatocellular hydration state

1994 ◽  
Vol 304 (2) ◽  
pp. 555-560 ◽  
Author(s):  
W P Newsome ◽  
U Warskulat ◽  
B Noe ◽  
M Wettstein ◽  
B Stoll ◽  
...  

Exposure of isolated perfused rat livers to hypo-osmotic (225 mosmol/l) perfusion media for 3 h led to a decrease of about 60% in mRNA levels for phosphoenolpyruvate carboxy-kinase (PEPCK) compared with normo-osmotic (305 mosmol/l) perfusions. Conversely, PEPCK mRNA levels increased about 3-fold during hyperosmotic (385 mosmol/l) perfusions. The anisotonicity effects were not explained by changes in the intracellular cyclic AMP (cAMP) concentration or by changes of the extracellular Na+ or Cl- activity. Similar effects of aniso-osmolarity on PEPCK mRNA levels were found in cultured rat hepatoma H4IIE.C3 cells, the experimental system used for further characterization of the effect. Whereas during the first hour of anisotonic exposure no effects on PEPCK mRNA levels were detectable, near-maximal aniso-osmolarity effects were observed within the next 2-3 h. PEPCK mRNA levels increased sigmoidally with the osmolarity of the medium, and the anisotonicity effects were most pronounced upon modulation of osmolarity between 250 and 350 mosmol/l. The aniso-osmolarity effects on PEPCK mRNA were not affected in presence of Gö 6850, protein kinase C inhibitor. cAMP increased the PEPCK mRNA levels about 2.3-fold in normo-osmotic media, whereas insulin lowered the PEPCK mRNA levels to about 8%. The effects of cAMP and insulin were also observed during hypo-osmotic and hyperosmotic exposure, respectively, but the anisotonicity effects were not abolished in presence of the hormones. The data suggest that hepatocellular hydration affects hepatic carbohydrate metabolism also over a longer term by modulating PEPCK mRNA levels. This is apparently unrelated to protein kinase C or alterations of cAMP levels. The data strengthen the view that cellular hydration is an important determinant for cell metabolic function by extending its regulatory role in carbohydrate metabolism to the level of mRNA.

FEBS Letters ◽  
1991 ◽  
Vol 279 (1) ◽  
pp. 14-18 ◽  
Author(s):  
Ned M. Mozier ◽  
Michael P. Walsh ◽  
James D. Pearson

1993 ◽  
Vol 70 (05) ◽  
pp. 800-806 ◽  
Author(s):  
C Ternisien ◽  
M Ramani ◽  
V Ollivier ◽  
F Khechai ◽  
T Vu ◽  
...  

SummaryTissue factor (TF) is a transmembrane receptor which, in association with factors VII and Vila, activates factor IX and X, thereby activating the coagulation protease cascades. In response to bacterial lipopolysaccharide (LPS) monocytes transcribe, synthesize and express TF on their surface. We investigated whether LPS-induced TF in human monocytes is mediated by protein kinase C (PKC) activation. The PKC agonists phorbol 12- myristate 13-acetate (PMA) and phorbol 12, 13 dibutyrate (PdBu) were both potent inducers of TF in human monocytes, whereas 4 alpha-12, 13 didecanoate (4 a-Pdd) had no such effect. Both LPS- and PMA-induced TF activity were inhibited, in a concentration dependent manner, by three different PKC inhibitors: H7, staurosporine and calphostin C. TF antigen determination confirmed that LPS-induced cell-surface TF protein levels decreased in parallel to TF functional activity under staurosporine treatment. Moreover, Northern blot analysis of total RNA from LPS- or PMA-stimulated monocytes showed a concentration-dependent decrease in TF mRNA levels in response to H7 and staurosporine. The decay rate of LPS-induced TF mRNA evaluated after the arrest of transcription by actinomycin D was not affected by the addition of staurosporine, suggesting that its inhibitory effect occurred at a transcriptional level. We conclude that LPS-induced production of TF and its mRNA by human monocytes are dependent on PKC activation.


1990 ◽  
Vol 265 (8) ◽  
pp. 4583-4591 ◽  
Author(s):  
J D Pearson ◽  
D B DeWald ◽  
W R Mathews ◽  
N M Mozier ◽  
H A Zürcher-Neely ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document