scholarly journals Sulphate-activated phosphorylase b: the pH-dependence of catalytic activity

1995 ◽  
Vol 310 (2) ◽  
pp. 565-570 ◽  
Author(s):  
S E Zographos ◽  
N G Oikonomakos ◽  
H B F Dixon ◽  
W G Griffin ◽  
L N Johnson ◽  
...  

The pH-dependence of sulphate-activated phosphorylase b has been studied in the direction of glycogen synthesis. The bell-shaped curve of the pH-dependence of the catalytic constant for the AMP-activated enzyme showed pK values of 6.1 and 7.3, but the curve for the enzyme activated by 0.9 M ammonium sulphate showed a drop of activity on the acid side at much higher pH values. Its bell was centred at pH 7.8 but it was too narrow to be characterized by only two pK values. The narrowness of the curve could be explained by positive co-operativity, but not its unusually steep acid side. We suggest that the fall on the acid side is due to more than one hydronation (addition of H+). The points can be fitted by a curve with two de-activating hydronations and a de-activating dehydronation having identical titration pK values of 7.5, and hence molecular values of 7.0, 7.5 and 8.0. If both 0.9 M ammonium sulphate and 5 mM AMP are added, the bell is as broad as with AMP alone, but is somewhat raised in pH optimum. The results are discussed in the light of new structural data from crystallographic studies on binary complexes of the enzyme.

1986 ◽  
Vol 64 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Yuchiong Hsuanyu ◽  
Keith J. Laidler

The enzyme β-glucosidase was attached covalently to the inner surface of nylon tubing. Flow kinetic studies were carried out at a range of temperatures, pH values, flow rates, and substrate concentrations. Various tests showed that the extent of diffusion control was negligible. At 25 °C the Michaelis constant was 33.4 mM, not greatly different from the value for the enzyme in free solution. The pH dependence was similar to that for the free enzyme. The Arrhenius plots showed inflexions at about 22 °C, as with the free enzyme, the changes in slope being small at the pH optimum of about 5.9 and becoming much more pronounced as the pH is increased or decreased. The immobilized enzyme is more stable than the free enzyme, both on storage at low and higher temperatures, and its reuse stability is greater.


1991 ◽  
Vol 275 (3) ◽  
pp. 767-773 ◽  
Author(s):  
Y K Li ◽  
J Boggaram ◽  
L D Byers

Two new alkylating reagents, chloro- and bromo-acetylphosphonate, were found to be very effective thiol-blocking reagents. The pH-dependence of the reaction of BAP with 2,4-dinitrothiophenol (25 degrees C, I 0.5) shows a tailing bell-shaped curve (with a plateau at high pH) characteristic of two ionizing groups: the thiol group (pKa 3.2) and the phosphonate group (pKa2 4.6). The rate constant for the reaction of the monoanionic inhibitor with dinitrothiophenolate (k2 = 7 M-1.s-1) is 120 times larger than that of the dianionic species. The haloacetylphosphonates were found to be irreversible inhibitors of glyceraldehyde-3-phosphate dehydrogenase from a variety of sources. They react with the active-site thiol group (Cys-149) and are half-site reagents with yeast glyceraldehyde-3-phosphate dehydrogenase. Thus, when two of the identical four subunits are modified the enzyme is catalytically inactive. The effects of pH (7-10), 2H2O and NAD+ on the reaction with the yeast enzyme were examined in detail. NAD+ enhances the alkylation rates. The second-order rate constant does not show a simple sigmoidal dependence on pH but rather a tailing bell-shaped curve (pKa 7.0 and 8.4) qualitatively similar to that obtained with dinitrothiophenol. There is no significant solvent isotope effect on the limiting rate constants and a normal isotope effect on the two pKa values. The results are consistent with the more reactive enzyme species containing a thiolate and an acidic group that may either donate a proton to the dianionic haloacetylphosphonate or orient the inhibitor.


1974 ◽  
Vol 143 (3) ◽  
pp. 775-777 ◽  
Author(s):  
John L. Wood

The pH-dependence of the degree of hydrogen-bonding between a base and its conjugate acid is considered. When only a small proportion of the total base is complexed, the amount complexed is proportional to (1+coshp)−1 where p=2.303 (pKa–pH), pKa being the dissociation constant of the conjugate acid. This represents sharp pH-dependence. As the proportion complexed increases, the curve broadens, eventually becoming flat-topped, with more than half the base complexed over the range of pH values pKa±logKC, approximately. (K is the complex association constant and C is the formal base concentration, including all forms.) There are similarities to the extent of mono-protonation of a dibasic acid.


1969 ◽  
Vol 47 (21) ◽  
pp. 4021-4029 ◽  
Author(s):  
H. P. Kasserra ◽  
K. J. Laidler

A kinetic study has been made of the trypsin-catalyzed hydrolysis of N-benzoyl-L-alanine methyl ester, at pH values ranging from 6 to 10. The substrate concentrations varied from 1.7 × 10−3 to 4.3 × 10−2 M. From the rates were calculated, at each pH, values of [Formula: see text] (corresponding to [Formula: see text]), [Formula: see text] (corresponding to [Formula: see text]) and [Formula: see text] The specific levorotation of trypsin was measured and found to vary with pH in the pH region 5–11, the change in specific rotation following the ionization of a single group with pK(app) of 9.4. At pH 11 the specific rotation of trypsin, its zymogen, and its phosphorylated derivative were approximately the same, suggesting similar conformations for all three forms of the protein.The kinetic results on the acid side were very similar to those obtained by other investigators for chymotrypsin; they imply that there is a group of [Formula: see text] in the free enzyme, presumably the imidazole function of a histidine residue, and that this group is involved in acylation and deacylation, which can only occur if it is unprotonated. The behavior on the basic side was found to be different from that with chymotrypsin revealing a decrease in [Formula: see text] at high pH corresponding to a value of [Formula: see text] whereas [Formula: see text] showed sigmoid pH-dependence. An interpretation of these results that is consistent with all available information is that a group of [Formula: see text] (presumably the —NH3+ function of the terminal isoleucine) controls the conformation and thereby the activity of the enzyme at different stages of complex formation. In contrast to chymotrypsin, the pK of this ionizing group appears to be generally lowered by covalent complex formation between trypsin and its substrates.


2009 ◽  
Vol 6 (1) ◽  
pp. 491-514 ◽  
Author(s):  
R. F. Krachler ◽  
R. Krachler ◽  
A. Stojanovic ◽  
B. Wielander ◽  
A. Herzig

Abstract. To date, little is known about the pH-stimulated mineralization of organic matter in aquatic environments. In this study, we investigated biodegradation processes in alkaline waters. Study site is a large shallow soda lake in Central Europe (Neusiedler See/Ferto). The decomposition rate of plant litter was measured as a function of pH by incubating air-saturated lake-water samples in contact with Phragmites litter (leaves) from the littoral vegetation. All samples showed high decomposition rates (up to 32% mass loss within 35 days) and a characteristic two-step degradation mechanism. During the degradation process, the solid plant litter was dissolved forming humic colloids. Subsequently, the humic colloids were mineralized to CO2 in the water column. The decomposition rate was linearly related to pH. Increasing pH values accelerated significantly the leaching of humic colloids as well as the final degradation process. The observed two-step mechanism controls the wetland/lake/air carbon fluxes, since large quantities of humic colloids are currently produced in the reed belt, exported through wind-driven circulations and incorporated into the open lake foodweb. At present, the lake is rapidly shrinking due to peat deposition in the littoral zone, whereas it has been resistant to silting-up processes for thousands of years. In order to investigate the cause of this abrupt change, the chemical composition of the lake-water was measured during 1995–2007. A thorough analysis of these data revealed that major lake-water discharges through the lake's artificial outlet channel led to a decline in salinity and alkalinity. According to our estimates, the lake's original salinity and alkalinity was 70–90% higher compared to the present conditions, with the consequence of substantially lower pH values in the present lake. The observed pH dependence of reed litter biodegradation rates points to a causal connection between low pH values and accumulation of peat in the lake basin. Our results suggest that the pH stimulated remineralisation of organic matter plays a major role in maintaining the long-term integrity of saline lake/wetland systems.


2020 ◽  
Author(s):  
Konstantin Laun ◽  
Iuliia Baranova ◽  
Jifu Duan ◽  
Leonie Kertess ◽  
Florian Wittkamp ◽  
...  

Hydrogenases are microbial redox enzymes that catalyze H2 oxidation and proton reduction (H2 evolution). While all hydrogenases show high oxidation activities, the majority of [FeFe]-hydrogenases are excellent H2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands that facilitate catalysis at low overpotential. Distinct proton transfer pathways connect the active site niche with the solvent, resulting in a non-trivial dependence of hydrogen turnover and bulk pH. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ in situ infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H2 oxidation or H2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pKa differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the natural pH dependence of hydrogen turnover as catalyzed by [FeFe]-hydrogenase.<br>


Genetics ◽  
1982 ◽  
Vol 100 (3) ◽  
pp. 455-473
Author(s):  
Tommy C Douglas ◽  
Kathryn A Kimmel ◽  
Patti E Dawson

ABSTRACT Two genetically variant forms of rat "acid" β-galactosidase were found to differ in isoelectric point and pH dependence, but not in thermostability or sensitivity to inhibition by p-mercuribenzoate (PMB). The results of two backcrosses and an intercross indicated that the isoelectric focusing phenotypes are controlled by two codominant alleles at a single autosomal locus, for which we propose the name Glb-1. No significant linkage between Glb-1 and albino (LG I), brown (LG II), or hooded (LG VI) was observed. Strain-specific differences in total levels of kidney β-galactosidase were detected, but it is not yet known whether the variation is controlled by genes linked to Glb-1. Experiments in which organ homogenates were incubated with neuraminidase indicated that the genetically variant forms do not result from differences in sialylation, though sialylation does appear to be largely responsible for the presence of multiple bands within each phenotype and for differences in the banding patterns of β-galactosidases derived from different organs. The β-galactosidase present in the bands used for Glb-1 typing resembles human GM1 gangliosidase (GLB1) with respect to pH optimum, substrate specificity, and susceptibility to inhibition by PMB. It also appears that Glb-1 is homologous with the Bgl-e locus of the mouse. In rats as in mice the genetically variant bands of β-galactosidase are active at acid pH and have relatively high isoelectric points. In both species these bands are readily detectable in kidney homogenates, and can be revealed in homogenates of liver or spleen following treatment with neuraminidase. The presence of the same β-galactosidase bands in homogenates of rat kidney and small intestine as well as in neuraminidase-treated homogenates of liver and spleen suggests that the Glb-1 variants differ by one or more point mutations in the structural gene for "acid" β-galactosidase.


1992 ◽  
Vol 283 (1) ◽  
pp. 223-233 ◽  
Author(s):  
M Rangarajan ◽  
B S Hartley

The mechanism of D-fructose isomerization by Arthrobacter D-xylose isomerase suggested from X-ray-crystallographic studies was tested by detailed kinetic analysis of the enzyme with various metal ions at different pH values and temperatures. At D-fructose concentrations used in commercial processes Mg2+ is the best activator with an apparent dissociation constant of 63 microM; Co2+ and Mn2+ bind more strongly (apparent Kd 20 microM and 10 microM respectively) but give less activity (45% and 8% respectively). Ca2+ is a strict competitive inhibitor versus Mg2+ (Ki 3 microM) or Co2+ (Ki 105 microM). The kinetics show a compulsory order of binding; Co2+ binds first to Site 2 and then to Site 1; then D-fructose binds at Site 1. At normal concentrations Mg2+ binds at Site 1, then D-fructose and then Mg2+ at Site 2. At very high Mg2+ concentrations (greater than 10 mM) the order is Mg2+ at Site 1, Mg2+ at Site 2, then D-fructose. The turnover rate (kcat.) is controlled by ionization of a residue with apparent pKa at 30 degrees C of 6.0 +/- 0.07 (Mg2+) or 5.3 +/- 0.08 (Co2+) and delta H = 23.5 kJ/mol. This appears to be His-219, which is co-ordinated to M[2]; protonation destroys isomerization by displacing M[2]; Co2+ binds more strongly at Site 2 than Mg2+, so competes more strongly against H+. The inhibition constant (Ki) for the two competitive inhibitors 5-thio-alpha-D-glucopyranose and D-sorbitol is invariant with pH, but Km(app.) in the Mg[1]-enzyme is controlled by ionization of a group with pKa 6.8 +/- 0.07 and delta H = 27 kJ/mol, which appears to be His-53. This shows that Km(app.) is a complex constant that includes the rate of the ring-opening step catalysed by His-53, which explains the pH-dependence. In the Mg[1]Mg[2]-enzyme or Co[1]Co[2]-enzyme, the pKa is lower (6.2 +/- 0.1 or 5.6 +/- 0.08) because of the extra adjacent cation. Hence the results fit the previously proposed pathway, but show that the mechanisms differ for Mg2+ and Co2+ and that the rate-limiting step is isomerization and not ring-opening as previously postulated.


2018 ◽  
Vol 475 (15) ◽  
pp. 2457-2471 ◽  
Author(s):  
Rajapiramuthu Srikalaivani ◽  
Amrita Singh ◽  
Mamannamana Vijayan ◽  
Avadhesha Surolia

Biochemical and crystallographic studies on Mycobacterium tuberculosis 3-hydroxyisobutyric acid dehydrogenase (MtHIBADH), a member of the 3-hydroxyacid dehydrogenase superfamily, have been carried out. Gel filtration and blue native PAGE of MtHIBADH show that the enzyme is a dimer. The enzyme preferentially uses NAD+ as the cofactor and is specific to S-hydroxyisobutyric acid (HIBA). It can also use R-HIBA, l-serine and 3-hydroxypropanoic acid (3-HP) as substrates, but with much less efficiency. The pH optimum for activity is ∼11. Structures of the native enzyme, the holoenzyme, binary complexes with NAD+, S-HIBA, R-HIBA, l-serine and 3-HP and ternary complexes involving the substrates and NAD+ have been determined. None of the already known structures of HIBADH contain a substrate molecule at the binding site. The structures reported here provide for the first time, among other things, a clear indication of the location and interactions of the substrates at the active site. They also define the entrance of the substrates to the active site region. The structures provide information on the role of specific residues at the active site and the entrance. The results obtained from crystal structures are consistent with solution studies including mutational analysis. They lead to the proposal of a plausible mechanism of the action of the enzyme.


Sign in / Sign up

Export Citation Format

Share Document