scholarly journals Purification and characterization of cysteine-S-conjugate N-acetyltransferase from pig kidney

1996 ◽  
Vol 317 (1) ◽  
pp. 213-218 ◽  
Author(s):  
Achim AIGNER ◽  
Martina JÄGER ◽  
Ralf PASTERNACK ◽  
Peter WEBER ◽  
Dirk WIENKE ◽  
...  

Microsomal cysteine-S-conjugate N-acetyltransferase catalyses the N-acetylation of various S-substituted cysteines in liver and kidney. We describe here the purification and more detailed characterization of this enzyme catalysing the final reaction of mercapturic acid biosynthesis, and thus playing a crucial role in the detoxicating metabolism of many xenobiotics. The solubilization of cysteine-S-conjugate N-acetyltransferase by deoxy-BIGCHAP [N,N´-bis-(3-d-gluconamidopropyl)deoxycholamide] was the prerequisite for partial purification by means of anion-exchange chromatography. The molecular mass of the enzyme was determined by gel filtration. A polyclonal antiserum was raised against the excised protein band from SDS/PAGE and purified antibodies were used for the complete purification of native cysteine-S-conjugate N-acetyltransferase by immunoaffinity chromatography. A dimeric form of the enzyme was sometimes detected on SDS/PAGE, depending on the degree of purification. For further characterization of cysteine-S-conjugate N-acetyltransferase, the stability of catalytic activity, the pH optimum and Km values were determined. The inhibitory effects of various agents were tested, revealing a substantial, yet not complete, loss of cysteine-S-conjugate N-acetyltransferase activity after treatment with cysteine proteinase inhibitors or probenecid under various conditions.

1989 ◽  
Vol 263 (2) ◽  
pp. 439-444 ◽  
Author(s):  
M V Laycock ◽  
T Hirama ◽  
S Hasnain ◽  
D Watson ◽  
A C Storer

A new cysteine proteinase was isolated from the digestive juice of the American lobster (Homarus americanus). The enzyme was purified by a combination of affinity and ion-exchange chromatography and gel filtration. The cysteine proteinase accounted for 80% of the proteolytic activity in the lumen of the hepatopancreas. The most potent heavy-metal inhibitors were Hg, Cu, and Ag ions. Inhibition by organic proteinase inhibitors, including E-64 [L-trans-epoxysuccinyl-leucylamido-(4-guanidino)butane] and activation of the enzyme by 2-mercaptoethanol and dithiothreitol are characteristic of cysteine proteinases. Several similarities to papain are noted and include the N-terminal sequence, of which 22 of the first 28 amino acids are identical. Some notable differences are the higher Mr of 28,000 compared with 23,350 for papain, and the low isoelectric point (pI 4.5) of the lobster enzyme. The effects of pH and temperature on catalytic activity of the lobster proteinase were studied with benzyloxycarbonylalanine p-nitrophenyl ester as the substrate. The kcat./Km value was effectively temperature-independent between 10 and 60 degrees C. The pH-activity profile for the lobster enzyme revealed four apparent protonation states, of which only two are active.


2017 ◽  
Vol 37 (1) ◽  
pp. 31
Author(s):  
Fitria Fitria ◽  
Nanik Rahmani ◽  
Sri Pujiyanto ◽  
Budi Raharjo ◽  
Yopi Yopi

Enzyme xylanase (EC 3.2.1.8) is widely used in various industrial  fields for the hydrolysis of xylan (hemicellulose) into xylooligosaccharide and xylose. The aims of this study were to  conduct partial purification and characterization of xylanase from marine Bacillus safencis strain LBF P20 and to obtain the  xylooligosaccharide types from xylan hydrolysis by this enzyme.  Based on this research, the optimum time for enzyme production  occurred at 96 hours with the enzyme activity of 6.275 U/mL and  enzyme specific activity of 5.093 U/mg. The specific activities were  obtained from precipitation by amicon® ultra-15 centrifugal filter devices, gel filtration chromatography and anion exchange chromatography that were increased by 15.07, 34.7, and 96.0  U/mg. The results showed that the highest activity at pH 7, temperature of 60 °C, and stable at 4 °C. Type of  xylooligosaccharide produced by this study were xylohexoses, xylotriose, and xylobiose. SDS-PAGE analysis and zimogram  showed that the molecular weight of xylanase protein were about  25 kDa. ABSTRAKEnzim xilanase (EC 3.2.1.8) digunakan dalam hidrolisis xilan  (hemiselulosa) menjadi xilooligosakarida dan xilosa. Penelitian  ini bertujuan untuk melakukan purifikasi parsial dan karakterisasi xilanase dari bakteri laut Bacillus safencis strain LBF P20 serta uji  hidrolisis untuk mengetahui jenis xilooligosakarida yang  dihasilkan oleh enzim tersebut. Berdasarkan hasil penelitian, waktu optimum untuk produksi enzim terjadi pada jam ke 96  dengan aktivitas enzim sebesar 6,275 U/mL dan aktivitas spesifik enzim sebesar 5,093 (U/mg). Aktivitas spesifik enzim hasil  pemekatan dengan amicon® ultra-15 centrifugal filter devices,  kromatografi filtrasi gel dan kromatografi penukar anion  mengalami peningkatan berturut-turut sebesar 15,1; 34,7 dan96,0 U/mg. Hasil karakterisasi menunjukkan aktivitas  tertinggi pada pH 7, suhu 60 °C dan stabil pada suhu 4 °C. Analisis SDS-PAGE dan zimogram menunjukkan berat molekul protein xilanase berkisar 25 kDa. Jenis gula reduksi yang  dihasilkan yaitu xiloheksosa, xilotriosa, dan xilobiosa.


2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


2000 ◽  
Vol 352 (3) ◽  
pp. 875-882 ◽  
Author(s):  
William L. TURNER ◽  
William C. PLAXTON

Cytosolic pyruvate kinase (PKc) from ripened banana (Musa cavendishii L.) fruits has been purified 543-fold to electrophoretic homogeneity and a final specific activity of 59.7µmol of pyruvate produced/min per mg of protein. SDS/PAGE and gel-filtration FPLC of the final preparation indicated that this enzyme exists as a 240kDa homotetramer composed of subunits of 57kDa. Although the enzyme displayed a pH optimum of 6.9, optimal efficiency in substrate utilization [in terms of Vmax/Km for phosphoenolpyruvate (PEP) or ADP] was equivalent at pH6.9 and 7.5. PKc activity was absolutely dependent upon the presence of a bivalent and a univalent cation, with Mg2+ and K+ respectively fulfilling this requirement. Hyperbolic saturation kinetics were observed for the binding of PEP, ADP, Mg2+ and K+ (Km values of 0.098, 0.12, 0.27 and 0.91mM respectively). Although the enzyme utilized UDP, IDP, GDP and CDP as alternative nucleotides, ADP was the preferred substrate. L-Glutamate and MgATP were the most effective inhibitors, whereas L-aspartate functioned as an activator by reversing the inhibition of PKc by L-glutamate. The allosteric features of banana PKc are compared with those of banana PEP carboxylase [Law and Plaxton (1995) Biochem. J. 307, 807Ő816]. A model is presented which highlights the roles of cytosolic pH, MgATP, L-glutamate and L-aspartate in the co-ordinate control of the PEP branchpoint in ripening bananas.


2005 ◽  
Vol 37 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Ye-Yun Li ◽  
Chang-Jun Jiang ◽  
Xiao-Chun Wan ◽  
Zheng-Zhu Zhang ◽  
Da-Xiang Li

Abstractβ-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 °C and was stable at temperatures lower than 40 °C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


1987 ◽  
Vol 241 (1) ◽  
pp. 129-135 ◽  
Author(s):  
R Zolfaghari ◽  
C R Baker ◽  
P C Canizaro ◽  
A Amirgholami ◽  
F J Bĕhal

A high-Mr neutral endopeptidase-24.5 (NE) that cleaved bradykinin at the Phe5-Ser6 bond was purified to apparent homogeneity from human lung by (NH4)2SO4 fractionation, ion-exchange chromatography and gel filtration. The final enzyme preparation produced a single enzymically active protein band after electrophoresis on a 5% polyacrylamide gel. Human lung NE had an Mr of 650,000 under non-denaturing conditions, but after denaturation and electrophoresis on an SDS/polyacrylamide gel NE dissociated into several lower-Mr components (Mr 21,000-32,000) and into two minor components (Mr approx. 66,000). The enzyme activity was routinely assayed with the artificial substrate Z-Gly-Gly-Leu-Nan (where Z- and -Nan represent benzyloxycarbonyl- and p-nitroanilide respectively). NE activity was enhanced slightly by reducing agents, greatly diminished by thiol-group inhibitors and unchanged by serine-proteinase inhibitors. Human lung NE was inhibited by the univalent cations Na+ and K+. No metal ions were essential for activity, but the heavy-metal ions Cu2+, Hg2+ and Zn2+ were potent inhibitors. With the substrate Z-Gly-Gly-Leu-Nan a broad pH optimum from pH 7.0 to pH 7.6 was observed, and a Michaelis constant value of 1.0 mM was obtained. When Z-Gly-Gly-Leu-Nap (where -Nap represents 2-naphthylamide) was substituted for the above substrate, no NE-catalysed hydrolysis occurred, but Z-Leu-Leu-Glu-Nap was readily hydrolysed by NE. In addition, NE hydrolysed Z-Gly-Gly-Arg-Nap rapidly, but at pH 9.8 rather than in the neutral range. Although human lung NE was stimulated by SDS, the extent of stimulation was not appreciable as compared with the extent of SDS stimulation of NE from other sources.


1986 ◽  
Vol 32 (10) ◽  
pp. 765-771 ◽  
Author(s):  
A. Gálvez ◽  
M. Maqueda ◽  
E. Valdivia ◽  
A. Quesada ◽  
E. Montoya

Streptococcus faecalis S-48 produces a broad spectrum antibiotic, active against Gram-positive and Gram-negative bacteria. This substance is produced in solid and liquid media and also in a defined basal medium. It is sensitive to protease, pronase, or trypsin, heating at 70 °C, and alkaline pH, but resistant to treatment with lipase, lysozyme, alkaline phosphatase, DNAase, RNAase, acidic or neutral pHs, and also lower temperatures (60 °C). Several organic solvents cause precipitation, but not inactivation. This antibiotic has been partially purified by gel filtration and further ion-exchange chromatography. Its molecular weight has been estimated close to 2000. The biological activity of this antagonistic substance against the selected indicator strains, Streptococcus faecalis S-47 and Escherichia coli U-9, is bactericidal. The characterization of this substance, initially classified as a bacteriocin, indicates that it is an antibiotic of peptidic nature. The significance of antibiotic occurrence in group D of the genus Streptococcus is also discussed.


1994 ◽  
Vol 40 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Andreas Prokop ◽  
Peter Rapp ◽  
Fritz Wagner

Production of extracellular β-1, 3-glucanase activity by a monokaryotic Schizophyllum commune strain was monitored and results indicated that the β-glucanase activity consisted of an endo- β-1, 3-glucanase activity, besides a negligible amount of β-1, 6-glucanase and β-glucosidase activity. Unlike the β-1, 3-glucanase production of the dikaryotic parent strain S. commune ATCC 38548, the β-1, 3-glucanase formation of the monokaryon was not regulated by catabolite repression. The endo- β-1, 3-glucanase of the monokaryon was purified from the culture filtrate by lyophilization, anion exchange chromatography on Mono Q, and gel filtration on Sephacryl S-100. It appeared homogeneous on SDS-PAGE with a molecular mass of 35.5 kDa and the isoelectric point was 3.95. The enzyme was only active toward glucans containing β-1, 3-linkages, including lichenan, a β-1, 3-1, 4-D-glucan. It attacked laminarin in an endo-like fashion to form laminaribiose, laminaritriose, and high oligosaccharides. While the extracellular β-glucanases from the dikaryotic S. commune ATCC 38548 degraded significant amounts of schizophyllan, the endo- β-1, 3-glucanase from the monokaryon showed greatly reduced activity toward this high molecular mass β-1, 3-/β-1, 6-glucan. The Km of the endoglucanase, using laminarin as substrate, was 0.28 mg/mL. Optimal pH and temperature were 5.5 and 50 °C, respectively. The enzyme was stable between pH 5.5 and 7.0 and at temperatures below 50 °C. The enzyme was completely inhibited by 1 mM Hg2+. Growth of the monokaryotic S. commune strain was not affected by its constitutive endo- β-1, 3-glucanase formation.Key words: endo- β-1, 3-glucanase, Schizophyllum commune, monokaryon, constitutive endo- β-1, 3-glucanase formation.


1987 ◽  
Vol 65 (10) ◽  
pp. 899-908 ◽  
Author(s):  
F. Moranelli ◽  
M. Yaguchi ◽  
G. B. Calleja ◽  
A. Nasim

The extracellular α-amylase activity of the yeast Schwanniomyces alluvius has been purified by anion-exchange chromatography on DEAE-cellulose and gel-filtration chromatography on Sephadex G-100. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS–PAGE) and N-terminal amino acid analysis of the purified sample indicated that the enzyme preparation was homogeneous. The enzyme is a glycoprotein having a molecular mass of 52 kilodaltons (kDa) estimated by SDS–PAGE and 39 kDa by gel filtration on Sephadex G-100. Chromatofocusing shows that it is an acidic protein. It is resistant to trypsin but sensitive to proteinase K. Its activity is inhibited by the divalent cation chelators EDTA and EGTA and it is insensitive to sulfhydryl-blocking agents. Exogenous divalent cations are inhibitory as are high concentrations of monovalent salts. The enzyme has a pH optimum between 3.75 and 5.5 and displays maximum stability in the pH range of 4.0–7.0. Under the conditions tested, the activity is maximal between 45 and 50 °C and is very thermolabile. Analysis of its amino acid composition supports its acidic nature.


1996 ◽  
Vol 313 (2) ◽  
pp. 423-429 ◽  
Author(s):  
Rajamma USHA ◽  
Manoranjan SINGH

Two major classes of protease are shown to occur in germinating winged-bean (Psophocarpus tetragonolobus) seeds, by assaying extracts at pH 8.0 and pH 5.1 with [14C]gelatin as substrate. At pH 8.0, the activity profile of the enzyme shows a steady rise throughout the period of germination, whereas the activity at the acidic pH is very low up to day 5 and then increases sharply reaching a peak on day 11, followed by an equally sharp decline. The winged-bean acidic protease (WbAP) has been purified to apparent homogeneity, as attested by a single protein band on both PAGE and SDS/PAGE. WbAP is a monomeric enzyme with a molecular mass of 35 kDa and a pH optimum of 6.0. It is a thiol protease that does not belong to the papain family and it has tightly bound Ca2+ as shown by 45Ca2+-exchange studies. Besides gelatin and casein, it hydrolyses a 29 kDa winged-bean protein, indicating a prospective physiological role for it in storage-protein mobilization. Immunoblot analysis shows that it occurs only in the seeds and sprouting tubers of this plant and also that it is synthesized in developing seeds just before desiccation. It appears that the newly synthesized enzyme is inactive, and activation takes place around day 6 of germination. However, neither the mechanism of activation nor the signal that triggers it is clearly understood.


Sign in / Sign up

Export Citation Format

Share Document